
IIITA | DSA-2013-Lab-Assignments

1

Data Structures and Algorithms

Lab assignments

1. Implement a stack using an array. The functions to work on
it are given below:

 size()

 is_empty()

 push()

 top()

 pop()

Eg:
Input:

 push 5

 push 15

 top

 pop

 push 25

 top

 pop

 top

 size

 is_empty

 pop

 is_empty

 exit

Output:
 15

 removed 15

 25

 removed 25

 5

 1

 no

 removed 5

 yes

2. Implement a program to handle linked list. Required

functions are given below:

 new_head(ptr_head, int)

 new_tail(ptr_head, int)

 find_node(head, int)

 delete_node(ptr_head, int)

 print_all_nodes(head)

 total_nodes(head)

Eg:
Input:

 new_head 12

 new_head 10

 new_tail 15

 total_nodes

 print_all_nodes

 find 10

 delete_node 10

 find 10

 print_all_nodes

 exit

Output:
 3

 10 12 15

 10 found

 10 deleted

 10 not found

 12 15

3. Implement a queue using a linked list. The functions to work

on it are given below:

 size()

 is_empty()

 enqueue()

 front()

 dequeue()

Eg:
Input:

 size

 is_empty

 enqueue 10

 front

 enqueue 20

 front

 size

 is_empty

 dequeue

 dequeue

 exit

Output:
 0

 yes

 10

 10

 2

 no

 removed 10

 removed 20

4. Implement binary search on integers and strings. Assume

that the input is not sorted.
a. Integers

Eg:
Input:

 5

 5 1 2 3 4

 search 2

 search 10

 search 3

 exit

Output:

 found 2

 not found 10

IIITA | DSA-2013-Lab-Assignments

2

 found 3

b. Strings

Eg:
Input:

 3

 hello world c

 search hello

 search India

 search WoRLd

 exit

Output:

 found “hello”

 not found “India”

 found “world”

5. Implement quicksort on integers.

Eg:
Input:

 5

 4 6 -1 32 4

Output:

 -1 4 4 6 32

6. Implement Heap-Sort on n integers.

Eg:
Input:

 5

 4 6 -1 32 4

Output:

 -1 4 4 6 32

7. Implement Binary Search Tree (BST). Construct first a BST

with n numbers. Subsequently, perform search (print
“found” or “not found”) for (-1 i), insert for (-2 i), delete
for (-3 i), print minimum for -4, print maximum for -5 and
print sorted numbers for -6 and stop for 0.

Eg:
Input:

 4

 5 4 2 6

 -1 4

 -1 3

 -4

 -5

 -6

 0

Output:

 found

 not found

 2

 6

 2

 4

 5

 6

8. Implement trie tree. Insert for (1, word), search for (2, word),

delete for (3, word) and stop for 0.

Eg:
Input:

 1 Gone

 1 Wind

 2 Wind

 2 Width

 3 Wind

 2 Wind

 0

Output:

 found

 not found

 not found

9. Implement disjoint set operations. The first n lines give

elements of n sets. Two integers should merge two disjoint
sets (stored sequentially, smaller set is merged at the end of
the larger) to which they belong and print the representative
of disjoint sent. Single integer should result in search for the
number and print the representative (first number) if found
and -1 otherwise. 0 should result in termination of the
program.

Eg:
Input:

 4

 1 3 4 6

 2 7 8 9

 10 11

 12 15 32

 11 32

 4

 9

 10

 20

 0

Output:
 10

 1

 2

 10

 -1

10. Implement in Floyd-Warshall algorithm for a given graph in

the form of weighted adjacency. Print row-wise the shortest
distance between all pairs. Also print path of the shortest
distance.

Eg:
Input:

 0 1 5

 1 0 2

 5 2 0

 1 3

IIITA | DSA-2013-Lab-Assignments

3

Output:
 0 1 3

 1 0 2

 3 2 0

 1 -> 2 -> 3

11. Implement Bredth First Search and print the path length (no.

of edges) between nodes i and j till i is zero. The graph is
undirected and unweighted and the adjacency matrix is
given as input.

Eg:
Input:
 0 1 0

 1 0 1

 0 1 0

 1 3

 0

Output:
 2

b. Implement Depth First Search and print if nodes i and j

are connected (“connected” or “not_connected”) until 0
is encountered. The graph is directed and unweighted
and the adjacency matrix is given as input.
Eg:
Input:

 0 1 0

 1 0 0

 0 1 0

 1 3

 3 1

 0

Output:

 Not connected

 connected

12. Using hashing by chaining made by an array of 100 linked

lists and a hash function that adds the ASCII values and
rounds it off to the range 0-99, implement insert (1, word),
find (2, word) and delete (3, word). The program should
terminate with input 0.

Eg:
Input:

 1 Gone

 1 Wind

 2 Wind

 2 Width

 3 Wind

 2 Wind

 0

Output:

 found

 not found

 not found

