Insertion Sort

struct node

int data;

node *next;

void isort(node *&head, int i)

node *xp; // pointer to previous node

node *xc; // pointer to current node

node *xi; // pointer to new node, ie., the node to be inserted

xc=head;

xi=new node;

xi->data=i;

xi->next=NULL;

// keep moving to the next node till any of the 3 conditions fail

while

1. current node is not NULL (xc != NULL)

2. next node is not NULL (xc->next != NULL)

3. i <= data in current NULL (i <= xc->data)

move to the next node (xp = xc; xc = xc->next;)

end while

// insert the new node (xi) identifying the appropriate case

Case 1: the list is empty (head == NULL)

xi becomes the head

Case 2: xi->data is smaller than head->data

xi becomes the new head

Case 3: the current data is larger than xi->data

xi comes between previous node (xp) and current node (xc)

Case 4: none of above (ie., new node could not be inserted before any node)

xi comes immediately after xc and is the new tail
Eg: Insert 5 into a list

The following cases arise. The node underlined is 1st node with value > 5.

Case 1: List is empty

	Ø (Sol: 5 → Ø)

Case 2: The new node might be the new head (5 < head)

	14 → 17 → Ø (Sol: 5 → 14 → 17 → Ø)

Case 3: Correct internal location is reached (ie, 5 is not the tail)

	3 → 7 → Ø (Sol: 3 → 5 → 7 → Ø)

	3 → 4 → 7 → Ø (Sol: 3 → 4 → 5 → 7 → Ø)

	3 → 4 → 7 → 8 → Ø (Sol: 3 → 4 → 5 → 7 → 8 → Ø)

Case 4: Cannot insert before any node, hence must be the new tail.

	1 → 2 → 3 → Ø (Sol: 1 → 2 → 3 → 5 → Ø)

