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Abstract

The native conformation of a protein, in
a given environment, is determined
entirely by the various interatomic
interactions dictated by the amino acid
sequence (1-3). We describe here a
knowledge-based approach for protein
structure assessment and prediction.
Using a well-defined set of high-
resolution protein structures, we have
derived statistical potentials, in the form
of atom-pairwise distance probability
density functions. These provide a
description of pairwise interatomic
interactions of native proteins. When
applied to highly randomized and noisy
structures of proteins distinct from the
basis set, native-like structures were
obtained to very high precision (<2A).
The examples tested include proteins of
all sizes (from 38 up to 461 amino acids
long) and diverse topological structures
(alpha, beta and alpha-beta classes). The
potentials appear to be sensitive enough
to recognize subtle distortions from a
native packing structure and in
optimization of structures drive them
consistently to a higher probability.
Therefore they provide a powerful tool
for refinement of X-ray and NMR derived
structures at arbitrary degrees of initial
precision.

Efforts to fold a protein from a random
structure corresponding to its sequence have
met with little success. The objective of a
number of these efforts has been to minimize
an energy or free energy function that
describes interatomic interactions (4-6) to
obtain the folded protein structure. These

ISMB-96

energy functions have been obtained from
theoretical or phenomenological
considerations. The direct energy function
methods include use of mechanics force-fields
(7) and semi-empirical force fields (8,9). The
traditional molecular mechanics force fields
use energy functions for bonds, angles,
torsions and for pairwise nonbonded
interactions. These have been employed for
both local structure predictions and in
conjunction with crystallographic data or
distance-constraints obtained from magnetic
resonance methods (10,11). Knowledge-
derived potential functions have also been
employed to fold protein sequences into
structures to a limited degree of success.
These include residue-based profiles (12,13),
lattice models (14-16), threading methods (17-
20) and homology models (21,22).

Knowledge-Based Potentials

The problem of describing a folded protein in
terms of the optimal interatomic interactions
can be inverted to obtain energy functions that
are optimal for folded protein structures. A
majority of these methods use high resolution
protein structures to derive pairwise residue-
level contact information or in a few cases
atom level interactions (23,24). The
knowledge of pairwise atomic contacts in
known protein structures reflects the relative
probability of finding atom pairs at specified
distances and hence can provide a measure of
the free energy of interaction. The theoretical
foundations for this stem from the Boltzmann
principle, which asserts that the probability of
a given atomic configuration for a protein
structure is related to the free energy.
Minimizing the free energy of a protein is
equivalent to maximizing concomitantly all



the pairwise atomic distance probabilities. We
note here that this is strictly true if and only if
the probabilities are truly independent.

We have used the above principle to develop
statistically-derived potentials for refining
and predicting protein structures. We derive
the statistical potentials as probability density
functions (PDFs) that describe the distribution
of distances between different groups of
atoms. Each heavy atom in an amino acid is
described as a group and the twenty amino
acids yield 167 groups of atoms. The distance
data for constructing the distributions is
obtained from a database of 380 unique
protein structures. The latter set is
constructed from a larger database of protein
structures by requiring each member of the
unique set to have a resolution of less than 2.5
A and any two members to have less than 50
percent sequence homology as defined by
standard BLAST protocols (25). Distance
examples are generated from this database for
every pair of atomic contacts and these are
used to construct the PDFs. The conditional
pairwise distance PDFs take the form of
Probability (X| Rj,Ak R;j,Al,Sn), where, X is
the distance, Rij and Rj represent residue
indices, Ax and A] atom indices, and Sp
represents the sequential distance between
the residues Rj and Rj. The total probability
of pairwise distance contacts in a protein is
given by combining the conditional
probabilities,
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where the indices run over all atoms, residues
and the specified sequential distances. The
sequential distance is used so as to preserve
the sequentially contiguous interactions that
give rise to secondary structure in proteins.
The case where n=0 represents the intra-
residue PDFs which are a measure of the
configurational and conformational geometry
of the amino acid considered. We observe that
for PDFs of atom pairs separated by more
than 3 residues there are no specific secondary
structure interactions and we consider these
as tertiary PDFs.

A unique PDF is formed for each unique
combination of Rj, Rj, Ak, A] and Sp. For
instance, P(X|Val,CG1,Leu,CD1,3) represents
the PDF for Val CGl-Leu CD1 atom pairs for
which the parent residues Val and Leu are
sequentially in 1-3 positions. A key problem
in deriving these potentials is the non-uniform
distribution of pairwise distances in the
distance space. To overcome this limitation
statistically rigorous methods of kernel
density estimation and maximum likelihood
evaluation are used to construct the PDFs
(26).

Methods

The January 1994 relase from the Brookhaven
Protein Data Bank (3611 protein chain
sequences) was used in building the non-
homologous set of proteins. Each entire
sequence was compared against all of the
sequences in the database. Sets of homologous
protein chaing were created with each set
containing proteins which had more than 50%
identity. Amongst the homologous set, the
highest resolution protein was chosen as a
representative [28]. Thus a list of unique
chains was selected.

The total number of atom types corresponding
to the heavy atoms in the twenty amino acids
is 167. The pairwise atomic distance PDFs
are generated for intra residue, residues
related by positions, n-n+1, n-n+2 and n-n+3
and each of the other pairs, within 10 A form
the tertiary PDFs. The n-n+1, n-n+2 and n-
n+3 and tertiary PDFS are computed
seperately for N to C and C to N terminal
directions. The PDFs are assumed
independent of each other. The only
additional PDF used is one corresponding to
the S-S bond in disulfides. The total number
of PDFs thus amount to 112,226 types and the
number of atomic distance pairs in the 380
proteins considered are 80,670,588. The
compressed PDFs occupy approximately 115
MBytes of storage. The computational time
required for constructing all the PDF's is 268
hours on a single R8000 SGI processor. The
annealing of medium sized protein from a
random structure takes about 40 hours on a
single R8000 processor.
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Kernel Density Estimation (KDE) coupled
with Bias Optimization (BO) used to construct
the distance PDFs. KDE algorithm employs a
normal distribution for the "kernel" function.
The algorithm first distributes the distance
examples along the distance axis, and then
slides the kernal function accross the distance
axis while computing a weighted sum. The
result of this convolution is then normalized so
the area under the curve sums to 1.0. The
final result is a PDF that estimates the
probability of any pairwise distance. The
height of the curve is proportional to the
probability. In other words, a distance D1 is
roughly twice as likely as distance D2 because
the D1’s probability P1 is twice as large as
D2’s probability P2.

The width of the kernel, sigma, is a critical
parameter for obtaining optimal PDFs. If
gigma is too small, the result will be a "jagged"
distribution that "overfits" the data.
Conversely, if the sigma is too large,
important local changes in probability will be
smoothed over which will "underfit" the data.
The solution is to optimize the choice of sigma
by selecting a range of different sigmas and to
select the sigma that performs the best.

The precise definition of the performance (i.e.,
the objective function for optimization) is
important. We need a measure that reflects
the predicted performance of the system when
operating on new (i.e., unseen) problems. In
our method we measure performance by
repeatedly selecting a random subset (e.g.,
90%) of all examples for training (i.e., inducing
the PDFs) and using the rest of the examples
for testing (i.e., predicting distances). The
process is repeated a number of times and the
accuracy of predictions is averaged over all
trials. The accuracy of a prediction is
measured in terms of maximum likelihood
principle (MLP). The MLP states that the
best probability distribution function is the
one that makes the joint probability of the
examples most likely.

i=t
performance = [1 P(D;)
i=1
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For numerical considerations, this equation is
expressed in terms of logs and is of the form:

i=t
log(performance) = ¥ log P(Dj)
i=1

We form the PDFs using only the training
examples and test the performance only on the
test examples. In summary the choice of a
sigma is dependent on the average likelihood
of test examples when evaluated against PDFs
formed from the training examples across
multiple partitions of the training and testing
set.

Further, squared distance division is carried
out to obtain radial density normalization. In
Fig. 1, we present exemplar PDFs for 4
categories. The height of the resulting
normalized PDF curve is a measure of the
relative probability of finding two atoms
belonging to two residues at the defined
distance. We note that all but the tertiary
probabilities when normalized by squared
distance go to zero before 10 A and the
tertiary probabilities reach a plateau value by
10 A. We compute a mean probability from
these truncated PDF curves. In evaluations of
protein structures, we subtract the expected
mean probability value corresponding to each
PDF from the actual probability to assess how
significantly better or worse that specific pair
interaction is as compared to an average pair
interaction of that type. Further, we can
obtain either atomic or residue profiles of a
protein, based on averaging over interactions
of each atom or over each residue respectively
and these profiles provide a relative measure
of deviation from ideality of the interactions of
the defined atom or residue in the context of
the protein structure.

The total normalized probability summed over
all pairwise atomic probabilities was
computed for all the 380 proteins data set
chosen for PDF construction. It was found
that there was a correlation between the total
logarithmic probability and the resolution of
the structures. The Spearman rank
correlation for normalized probabilities
yielded a Z-value of -5.6 and a P-value less
than 0.0001.



In the annealing procedure, atoms are
incrementally moved in the direction which
maximizes probability of all the atom's
interactions, weighting each interaction
equally. In each step, atoms are moved one at
a time and the order in which each atom is
moved is randomized each step. An atom is
moved by defining a sphere of radius 0.2 A
around it, and randomly selecting 100
candidate points within the sphere using a
uniform sampling distribution. The candidate
points are evaluated one at a time and the
difference between the candidate atom
probability and current atom probability is
calculated. The standard probabilistic
simulated annealing acceptance criterion is
used to determine when to move the atom.

The only additional constraint used in
addition to the distance PDFs was a torsional
term that was biased towards the correct
chirality for each amino acid. For all the
optimization experiments, 200 steps of the
annealing procedure was employed. The
control parameters for annealing, the tertiary
interactions weight, the chirality weight, and
the temperature used for simulated annealing
changed each step based on linear schedules.
The weight of tertiary interactions was varied
from 0.0 to 1.0, the weight of the chirality
term varied from 0.08 to 0.01, and the
temperature in normalized probability units
varied from 1/32 to 1/1000.

Table 1. Comparison of Total Probabilities of Low and High Resolution Protein Pairs

PDB Name
(Resolution
Protein in A)

Pancreatic Trypsin Inhibitor 3pti(1.50)
Alpha Bungarotoxin 2ebx(1.40)
Cytochrome B5 2b5c(2.00)
Plastocyanin 1pcy(1.69)
Parvalbumin 1cpv(1.86)
Cytochrome B562 156b(2.50)
Pseudoazurin laza(2.00)
Proteinase A 1sga(2.80)
Dihydrofolate Reductase 1d£r(2.50)
Lysozyme 11zm(2.40)
Alpha-Lytic Protease lalp(2.80)
Actinidin lact(2.80)
Acid Proteinase lapr(2.50)
Thermolysin 1tIn(2.30)
Glutathione Reductase 2grs(2.00)

Total PDB Name ATotal
distance (Resolution distance
log(prob) in A) log(prob)
-0.0043 9pti(1.22) -0.0037
«0.0230 3ebx(1.490) -0.0178
0.0218 3b5c(1.50) 0.0338
-0.0113 1plc(1.33) -0.0082
-0.0052 4cpv(1.50) 0.0361
-0.0165 256b(1.40) 0.0877
-0.0324 2aza(1.80) -0.0230
-0.0472 2s8ga(1.50) -0.0141
-0.1858 3dfr(1.70) -0.1221
-0.0142 31zm(1.70) 0.0421
-0.0310 2alp(1.70) -0.0192
-0.2524 2act(1.70) -0.0045
-0.1147 2apr(1.80) -0.0064
-0.8905 3tIn(1.80) 0.0082
-0.1496 3grs(1.54) 0.0016

A The total distance log (probability) is both mean value and r-squared normalized.

PDF Profiles of Protein Structures

The PDF curves represent local structure and
packing interactions in proteins. An ideal
protein would have every pair of atoms in the
regions of high or highest probability and thus
possess optimal interactions. In general
higher resolution protein structures have
higher pairwise atomic probabilities. In Table
1, we compare the total logarithmic

probability scores averaged over all the
pairwise interactions in the protein for 15
protein pairs, whose structures have been
obtained at two resolutions. These proteins
were not included in the 380 unique protein
set used to construct the PDFs. In each case
the higher resolution protein structure has a
higher probability score. In one case, where
the structures had the same resolution, the
one with a lower crystallographic R-factor had
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Figure 1. Representative PDFs for Val CG1-Leu CD1 atom pairs. N, N+1 represents adjacent
Val-Leu residues. N,N+2 those seperated by one residue, N,N+3 those seperated by two
and > N, N+3 stands for all other Val CG1-Leu CD1atom pairs. The PDFs are first normalized to

unity and then by radial density.
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Figure 2, Comﬁﬁarison of (A) three dimensional structures of T4 phage lysozyme at 2.4 (1LZM)
and 1.7 A (3LZM) resolution, The darker and light shades represent low and high distance
probability pairwise atomic contacts. (B) Residue profiles of 3LZM and 1LZM. The positive
log(Probability) values indicate better pairwise atomic contacts averaged over all atoms for the
residue. The C-terminal domain of 3LZM is better refined than that of 1LZM.
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a higher probability score. To further
illustrate the regions in the protein that have
more ideal interactions as defined by the PDF
scores, we show a comparison of the two
structures and the residue-wise probability
profiles of T4 phage lysozyme, 3lzm at 1.7 A
resolution and 1lzm at 2.4 A resolution, in Fig.
2. The C-terminal domain is better resolved
in 3lzm as reflected by the higher probability
scores.

The x-ray structure of the single strand DNA-
binding Gene V protein was solved by two
groups of researchers and both used the x-ray
data in conjunction with molecular mechanics
methods to refine the structures (2GN5 and
OGVP). One of the structures (2GN5) had a
phase shift error in the N-terminal domain of

LOG PROBABILITY

2GNS

Figure 3. (A)

Gene V protein (2GN5 and 0GVP). (B). Comparison of the residue pro

the protein although the overall topology of
the two structures was similar. Despite the
low molecular mechanics energies of both
structures one of them was flawed by the
phase shift. In Fig. 3, we compare the total
and individual PDF residue profiles of the two
structures. The overall residue profiles show
clearly that the structure 2GN5 is not native-
like owing to the large number of low distance
probabilities. Analysis of the individual
profiles reveals that the intra-residue and
neighbour residue profiles obtained from
pairwise interatomic interactions show that
the PDF method is able to discriminate the
non native-like local geometry of the residues.
The structure 0GVP is consistent with native
protein structures.

40
RESIDUE NUMBER
Comparison of the three dimensional structures of the sin?le-strand DNA binding

60 80

iles of the two structures.

Threading of a Sequence into Structural
Motifs

In order to examine the value of PDFs in
assessing structural fragments of naturally
occuring proteins, we examined a structured
fragment from the peptide GCN [28]. The
structure of the native fragment is helix-like.
We threaded the sequence into well-defined
secondary-structural motifs extracted from
high-resolution structures and energy-
minimized the structures using molecular
mechanics methods. The various structural
motifs into which the sequence was threaded
were analyzed for PDF profiles. Fig 4

presents the structural motifs and a
comparison of the PDF profiles. Despite the
very low molecular mechanics energies of the
turn-like fragments, the PDF residue profiles
show the highest probability for the native
structure.

Annealing Noisy Protein Structures

An important use of the knowledge-based
potentials is in the refinement of a non-native
or poorly resolved protein structure to a native
state. In conventional methods, optimization
on an energy landscape is carried out to obtain
the native protein structure. The potential
functions that yield the energy landscape are
based on either molecular mechanics-based, x-
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ray structure factors, NOE distance
constraints or combinations of these (27).
Molecular mechanics functions yield a very
rough energy landscape and the resulting
multiple minima render energy optimization
complex. By virtue of being extremely
specific, our statistical potentials, which
describe each pairwise atomic interaction in
accurate detail, yield a smooth and arguably
unique minimum in the energy landscape and
hence are ideally suited for folding non-native
and noisy into native structures. We
demonstrate the power of this method for
diverse classes of proteins and suggest its
possible use with low resolution x-ray or
partial NOE data.

We use an annealing procedure to predict the
structures of the proteins listed in Table 2,
starting from noisy structures. Each of the
initial structures was created by adding noise
to the x-ray structure. Noise was added by
defining a sphere with a 10 A radius around
each atom and randomly relocating the atom
within the sphere using a uniform sampling
distribution, i.e., all points within the sphere
were treated as equally likely.

Table 2 shows the r.m.s. deviations of the 15
proteins annealed from a randomized
structure as compared to the x-ray structures.
These proteins are chosen so as represent
diversity in size, packing and fold and are
excluded from the set from which PDFs are
constructed. In all of the examples studied, a
well-connected compact topological structure
was formed in the early stages of annealing,
i.e., within 50 steps of optimization and the
resulting structures are similar to the x-ray
structures. A large contribution to the small
RMS deviations from the x-ray structures
stem from the solvent exposed side-chain
orientations. The PDFs do not take into
account explicitly the protein-solvent
interactions or crystal contacts. However,
they improve the interactions in the protein
interior so as to optimize packing. We wish to
note, that optimization wusing covalent
constraints alone yielded structures which
were sequentially connected but lacking both
secondary structures and tertiary packing
arrangements.

Table 2. RMS Deviation and Total Probabilities of Refined Proteins. The RMSDs refer to

comparison of the x-ray structure.

Number of All

Residues
Protein (Number
of Atoms)
Pancreatic Trypsin 58 (458)
Inhibitor(9pti)
Alpha Bungarotoxin (3ebx) 62 (474)
Cytochrome B5 (3b5c) 85 (692)
Plastocyanin (1plc) 99 (737)
Parvalbumin (4epv) 108 (806)
Cytochrome B562 (256b) 106 (826)
Pseudoazurin (2aza) 129 (975)
Proteinase A (2sga) 181 (1258)
Dihydrofolate Reductase (3dfr) 162 (1293)
Lysozyme (3lzm) 164 (1308)
Alpha-Lytic Protease (2alp) 198 (1390)
Actinidin (2act) 218 (1645)
Acid Proteinase (2apr) 325 (2402)
Thermolysin (8tin) 316 (2431)
Glutathione Reductase (3grs) 461 (3498)

All Atom- Back ATotal dist.
Atom- RMSD -bone log(prob)
RMSD in A Atom-
(refined) ¥ RMSD
(random) inA
7.826 1.998 1.667 -0.026
7.849 2.040 1.496 -0.042
7.810 2.085 1.696 -0.001
7.803 2.024 1.633 -0.030
7.791 2.180 1.636 0.001
7.782 1.913 1.475 0.036
7.784 2.128 1.558 -0.028
7.751 2.129 1.657 -0.041
7.743 1.930 1.517 -0.017
7.741 2.081 1.610 0.006
7.738 2.144 1.618 -0.040
7.764 2.312 1.801 -0.038
7.7187 2.142 1.687 -0.027
7.784 2.051 1.655 -0.014
7.777 2.157 1.652 -0.016

A The total distance log (probability) is both mean value and r-squared normalized.
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Figure 4. (A) The structural motifs into which the GCN peptide fragment is threaded.
The structural motifs include native, standard alpha helix, poI‘/1 proline helix, beta strand,
beta | turn, beta Il turn, type VI turn and Type VIl turn. (B) The residue profiles of the
peptide in the above structural motifs are compared. The native structure has the highest
overall profile.
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Figure 5. (A) Comparison of the randomized, annealed and x—ray structure of the 461
residue glutathione reductase (3grs). Only Ca atoms are displayed. (B) Comparison
of the annealed and x-ray structures of the 162-residue dihydrofolate reductase (3dfr).
The atoms are color coded such that the darker shade indicates lower pairwise atom
distance probabilities. The x-ray structure has numerous improbable contacts (darker
lines), which are corrected in the annealed structure (lighter lines). (C) Residue-wise
probability profiles for the x—ray and refined dfr structures.
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X-Ray Predicted

Figure 6. Comparison of the x-ray and annealed structures of cytochrome B562 (256b).
Helices are represented by cylinders and the side chains thatrepack in PDF-based annealing
are represented by spheres. The x-ray structure shows the heme group and the packing of
the side chains and the annealed structure shows the packing reorganization; the heme group
was not considered in the PDF-based annealing.

40 Steps 50 Steps 200 Steps X-Ray

7. Structures of T4 phage lysozyme at different stages of annealing are shown. The color
coding is darker (low) to lighter (high probabilities). The randomized structure anneals to a
compact structure in the early stages and to secondary structures in the first 50 steps. The
structure after 200 steps of annealing has achieved most of the secondary structure in the
actual protein and has probabilities close to those in the x—ray structure.
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In Fig. 5, we present the initial noisy,
annealed and the x-ray structures of the two
proteins, 461-residue glutathione reductase
(3grs) and 162-residue dihydrofolate reductase
(3dfr). In the latter, we also compare residue-
averaged PDF profiles of the refined and the
native x-ray structures. The x-ray structure
has numerous improbable contacts, which are
refined in the annealed structure.

In Fig. 6, we present the annealed and the x-
ray structures of the protein cytochrome B562,
(256b). We choose this protein to test the PDF
potentials in assessing proteins that contain
prosthetic groups. In the cytochrome B562,
the non-inclusion of the prosthetic heme group
in the PDF optimization does not appear to
affect the overall structure. Fig. 4 shows that
the side chain atoms of residues in contact
with the heme, Met 7, Asn 11, Phe 65, Arg 98
and Arg 106, reorient to provide better
packing in the optimized structure which does
not contain the heme group. Helices 3 and 4
in the native protein move towards each other
so as to yield better packing. Despite the
deviations in the local region near the
prosthetic group, the rest of the protein is
annealed to the native structure.

We examined the annealing of the protein
structures with the PDF method, by following
the folding process in bacteriophage T4
lysozyme. In Fig. 7, we present different
stages of annealing of a noisy structure, with
the colors representing the transition of the
structure from low probability and
consequently high energy to high probability
interactions. The early stages of annealing
produces compactness, while the secondary
structures are formed within circa 50 steps.
At 200 steps of annealing the protein has
optimized close to the actual structure. The
folding process shows the specificity and hence
the accuracy of these statistical potentials for
native protein structure.

In summary, we have developed statistical
potentials that describe the folded state of
proteins accurately. These potentials are
independent of protein sequence homologies,
secondary structures or folds and contain
information at the fundamental level of
pairwise atomic interactions specific for each
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pair of residues. The distance-based
statistical potentials appear to be ideally
suited for combining with x-ray and NMR
structural refinement methods.
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