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Abstract

Protein structures in the Protein Data Bank provide a wealth of data about the interactions that
determine the native states of proteins. Using the probability theory, we derive an atomic distance-
dependent statistical potential from a sample of native structures that does not depend on any adjustable
parameters (Discrete Optimized Protein Energy, or DOPE). DOPE is based on an improved reference
state that corresponds to noninteracting atoms in a homogeneous sphere with the radius dependent on
a sample native structure; it thus accounts for the finite and spherical shape of the native structures. The
DOPE potential was extracted from a nonredundant set of 1472 crystallographic structures. We tested
DOPE and five other scoring functions by the detection of the native state among six multiple target
decoy sets, the correlation between the score and model error, and the identification of the most accurate
non-native structure in the decoy set. For all decoy sets, DOPE is the best performing function in terms
of all criteria, except for a tie in one criterion for one decoy set. To facilitate its use in various
applications, such as model assessment, loop modeling, and fitting into cryo-electron microscopy mass
density maps combined with comparative protein structure modeling, DOPE was incorporated into the
modeling package MODELLER-8.

Keywords: statistical potential; protein structure prediction; comparative or homology modeling;
model assessment

The native structure generally has the lowest free energy
of all states under the native conditions (Anfinsen 1972,
1973). Therefore, an accurate free energy function would
enable the prediction and assessment of protein structures
(Dill 1985, 1997; Bryngelson et al. 1995; Dobson et al.
1998; Shakhnovich 2006). In principle, the free energy
surface of a protein can be derived by thoroughly sam-
pling the potential energy surface defined by a molecular
mechanics force field (Brooks et al. 1988). However, this
approach is computationally prohibitive and may be
further limited by errors in potential energy functions.

Instead of relying on free energy, an alternative approach
is to construct a scoring function whose global minimum
also corresponds to the native structure from a sample of
native structures of different sequences (Tanaka and
Scheraga 1976; Miyazawa and Jernigan 1985; Sippl
1990) deposited in the Protein Data Bank (PDB) (Kour-
anov et al. 2006). Due to its dependence on known protein
structures, such a scoring function is often termed a
knowledge-based or statistical potential.

The pioneering work of Tanaka and Scheraga (1976)
related the frequencies of contact between different
residue types, obtained from known native structures, to
the free energies of corresponding interactions using the
simple relationship between free energy and the equilib-
rium constant. Their work was followed by that of
Miyazawa and Jernigan (1985, 1996, 1999), who de-
veloped residue contact statistical potentials using a qua-
sichemical approximation. A new form of a statistical
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potential dependent on a distance between two residue
types was then proposed independently by Sippl (1990,
1993a, b), based on the assumption that the distributions
of distances between different residue types in diverse
native structures in PDB are Boltzmann-like.

Subsequently, a large number of different statistical
potentials were described and tested (Hendlich et al.
1990; Colovos and Yeates 1993; Sippl 1993a; Kocher
et al. 1994; Huang et al. 1995; Rooman and Wodak 1995;
Jernigan and Bahar 1996; Jones and Thornton 1996;
Miyazawa and Jernigan 1996; Moult 1997; Park and
Levitt 1996; Park et al. 1997; Reva et al. 1997; Simons
et al. 1997; Vajda et al. 1997; Furuichi and Koehl 1998;
Melo and Feytmans 1998;Rooman and Gilis 1998; Samu-
drala and Moult 1998; Betancourt and Thirumalai 1999;
Jones 1999b; Rojnuckarin and Subramaniam 1999; Simons
et al. 1999; Bastolla et al. 2000; Chiu and Goldstein 2000;
Gatchell et al. 2000; Lazaridis and Karplus 2000; Ven-
druscolo et al. 2000; Lu and Skolnick 2001; Melo et al.
2002; Keasar and Levitt 2003; Zhou and Zhou 2003;
Betancourt and Skolnick 2004; Buchete et al. 2004a,b;
Wang et al. 2004; Zhang et al. 2004; Chen and Shakhno-
vich 2005; Fang and Shortle 2005; Qiu and Elber 2005;
Summa et al. 2005; Dehouck et al. 2006; Eramian et al.
2006). Statistical potentials can be classified by the fol-
lowing characteristics: (1) protein representation (e.g., cen-
troids of amino acid residues, Ca=Cb atoms, and all atoms),
(2) the restrained spatial feature (e.g., solvent accessibility,
contact, distance, torsional angle), and (3) the reference
state. Statistical potentials for the all-atom representation
are generally more accurate than those for an amino acid
residue representation (Samudrala and Moult 1998; Lu and
Skolnick 2001; Melo et al. 2002; Zhou and Zhou 2002).
The most commonly used statistical potentials depend on
atomic distances only.

Statistical potentials are widely used in numerous
applications because of their relative simplicity, accuracy,
and computational efficiency. These applications include
assessment of experimentally determined and computa-
tionally predicted protein structures (Sippl 1993b; DeBolt
and Skolnick 1996; Gatchell et al. 2000; Melo et al. 2002;
John and Sali 2003; Wang et al. 2004; Topf and Sali 2005;
Topf et al. 2006), ab initio protein structure prediction
(Bowie et al. 1991; Sun 1993; O’Donoghue and Nilges
1997; Chiu and Goldstein 2000; Tobi and Elber 2000;
Tobi et al. 2000), fold recognition or threading (Maiorov
and Crippen 1992; Sippl and Weitckus 1992; Bryant and
Lawrence 1993; Ouzounis et al. 1993; Huang et al. 1995;
DeBolt and Skolnick 1996; Jones and Thornton 1996;
Reva et al. 1997; Jones 1999a; Kolinski et al. 1999;
Miyazawa and Jernigan 1999, 2000; Panchenko et al.
2000; Skolnick et al. 2000), detection of native-like
protein conformations (Hendlich et al. 1990; Casari and
Sippl 1992; Bauer and Beyer 1994; Samudrala and Moult

1998; Simons et al. 1999; Gatchell et al. 2000; Vendrus-
colo et al. 2000), and prediction of protein stability (Gilis
and Rooman 1996, 1997).

Perhaps the most essential question in the derivation of
a statistical potential is how best to formulate and inter-
pret a scoring function derived from a sample of native
structures. In general, the derivation of a statistical poten-
tial has been motivated by a presumed analogy between
a sample of native structures and the canonical ensemble
in statistical mechanics. The principal of the correspond-
ing assumptions is that the distributions of different
structural features obtained from a sample of native
structures obey the Boltzmann distribution of statistical
mechanics (Sippl 1990). However, such a sample contains
native states of different sequences at different temper-
atures, not states of the same sequence over a longer
period of time at a specific temperature (Thomas and Dill
1996b), as required by the definition of the canonical
ensemble to which the Boltzmann distribution applies.
Therefore, alternative interpretations of the origin of the
Boltzmann-like distribution for structural features in
a sample of native structures have also been suggested
(Finkelstein et al. 1995). In this other view, the Boltz-
mann-like distribution is a consequence of evolution that
favors structural features for which more sequences have
the global free energy minimum.

As a result of the uncertainties in the very formula-
tion of a statistical potential, there are several related
problems, including the question of the most appropriate
reference state (Skolnick et al. 1997), the additivity of
the individual terms in a statistical potential (BenNaim
1997), as well as balancing of a statistical potential
with other terms that may be used in a complete scoring
function for protein structure prediction (Misura et al.
2006).

Here, we first identify a statistical potential with the
negative logarithm of the joint probability density func-
tion of a given protein. We then derive an atomic
distance-dependent statistical potential from a sample of
native structures based entirely on the probability theory,
without recourse to statistical mechanics, thus circum-
venting the assumption of the Boltzmann distribution.
Subsequently, we clarify the assumptions and approxi-
mations needed to interpret a statistical potential as
a potential of mean force. This approach allowed us to
treat the problem of the reference state more accurately
than has been done previously. In our theory, the refer-
ence state is a finite sphere of uniform density and
appropriate size, instead of the distribution of interatomic
distances in the sample native structures irrespective of
their sizes and atom types. In other words, in contrast to
the previous approaches, our reference state explicitly
depends on the sizes of the native structures from which
the statistical potential is derived. This improvement
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results in an increased accuracy of protein structure
assessment, as demonstrated by testing various statistical
potentials, including ours, on multiple decoy sets. We
term our new statistical potential Discrete Optimized
Protein Energy (DOPE).

We begin by deriving DOPE from a sample of the
native structures (see Theory). Next, we describe its
accuracy compared to five other scoring functions with
the aid of six multiple target decoy sets (see Results). We
proceed by discussing its relative successes, failures, and
applications (see Discussion). A detailed description of
the training and decoy sets, the evaluated scoring func-
tions, and the evaluation criteria are provided in Materials
and Methods.

Theory

In this section, we describe the theory of the Discrete
Optimized Protein Energy (DOPE). DOPE is an atomic
distance-dependent statistical potential calculated from
a sample of native protein structures. It is grounded
entirely in the probability theory. We first define a statis-
tical potential as the negative logarithm of the joint
probability density function (pdf) of the atomic Cartesian
coordinates. We then express the joint pdf as a product of
pair pdfs. Next, we derive the pair pdf from a distance
pdf, extracted from a single sample native structure and
a reasonable definition of the reference state. Finally, we
show how to combine the pair pdfs from a sample of
many native structures of varying size to obtain the joint
pdf. We conclude this section by clarifying the assump-
tions and approximations needed to connect our statistical
potential and a potential of mean force.

Joint pdf for a native structure as a product of pair pdfs

Prediction of the native structure of a protein would be
enabled by expressing our knowledge of any kind as
a scoring function whose global optimum corresponds to
the native structure. One such function is a joint proba-
bility density function of the Cartesian coordinates of the
protein atoms, given available information I about the
system, pðx*1; x

*

2; x
*

3; :::; x
*

N jIÞ, where N is the number of
atoms in the protein and x

*

i are the Cartesian coordinates
of atom i. For each atom in a given protein, the joint pdf p
gives the probability density that the atom i of the native
structure is positioned very close to x

*

i, given the in-
formation I we wish to consider in the calculation. In
general, information I may include the sequence of the
protein, a molecular mechanics force field, experimental
structural information, a sample of known native struc-
tures, and an alignment of the sequence to a related
known protein structure. For example, when information I
reflects only the sequence and the laws of physics under

the conditions of the canonical ensemble, the joint pdf
corresponds to the Boltzmann distribution. If I also
includes a crystallographic data set sufficient to define
the native structure precisely, the joint pdf is a Dirac delta
function centered on the native atomic coordinates. For
simplicity, we omit I from notation in the rest of the
paper.

We now wish to estimate the joint pdf for a given
protein from a sample of the native structures for different
proteins, deposited in the PDB. To minimize the needed
size of the sample and to derive a joint pdf for any protein
sequence, we seek to approximate the joint pdf p in terms
of pdfs for all pairs of atoms in the system, pð~xi;~xjÞ (i.e.,
pair pdfs); a pair pdf will depend only on the type and
position of the two atoms, not on the whole sequence.

As suggested above, the joint pdf p can be approxi-
mated by a normalized product of the pair pdfs for all
protein atom pairs:

pð~x1;~x2; . . . ,~xNÞ �
YN
i 6¼j

pð~xi;~xjÞ=ð
YN
i

pð~xiÞÞN�2
}
YN
i 6¼j

pð~xi;~xjÞ

(1)

The denominator is derived from the condition that the
joint pdf must be a product of single body pdfs when all
the pair pdfs are uncorrelated with each other. The terms
in the denominator, pð~xiÞ, are single-body distribution
functions that depend only on the composition of the
protein and the total volume of the system. In other
words, pð~xiÞ is the number density of atom i, equal to the
reciprocal volume of the system. Because pð~xiÞ is con-
stant for a given protein, it does not impact on the rank
order of different conformations and is ignored here.

In the context of the statistical mechanical liquid state
theory, Equation 1 is also known as the Kirkwood
superposition approximation (Kirkwood 1935). The su-
perposition approximation would be exact only if all the
pair pdfs were mutually independent from each other
[i.e., pð~xi;~xjÞ ¼ pð~xi;~xjj~xk;~xlÞ for i 6¼ j and k 6¼ l]. The pair
pdfs pð~xi;~xjÞ of atom pairs are generally interdependent
because each atom in the system interacts with more than
one other atom; for example, a major source of interde-
pendence of pair pdfs for nonbonded atoms within the
same amino acid residue are the chemical bonds. For
simple dense liquids, the ratio between the exact three-
body distribution and its two-body approximation ranges
from 0.8 to 1.2 (Alder 1964; Rahman 1964). In general,
the Kirkwood approximation of the joint pdf pð~x1;~x2;
~x2 . . . ;~xNÞ by pair pdfs pð~xi;~xjÞ is clearly more accurate
than a product of N single-body pdfs, pð~xiÞ.

It is tempting to equate interdependence with redun-
dancy and thus minimize the problem by including only
a subset of atoms (e.g., only Cb atoms) in the joint pdf.

Statistical potential for protein structure assessment
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However, it was found empirically that such simplifica-
tions reduce the accuracy of the resulting statistical
potentials (Samudrala and Moult 1998; Lu and Skolnick
2001; Melo et al. 2002; Zhou and Zhou 2002). A probable
reason is that the all atom pair pdfs jointly encode the
preferred relative orientations between whole residues.
Correspondingly, it appears to be possible to reduce the
number of atoms considered in the joint pdf without
sacrificing its accuracy by using orientation-dependent
terms (Buchete et al. 2004b), albeit this reduction comes
at a cost of introducing additional degrees of freedom into
each term.

A general reduction of the joint pdf to lower-order pdfs
is provided by the Bogolyubov–Born–Green–Kirkwood–
Yvon hierarchy of a chain of integral equations connect-
ing the N-body pdf with simpler pdfs (McQuarrie 1975).
Therefore, in principle, the formalism developed here for
deriving the joint pdf as a sum of pairwise terms can also
be applied to derive the joint pdf approximated by a sum
of higher-order terms.

The joint pdf may in principle be improved beyond the
superposition approximation by iteratively modifying the
individual terms so as to maximize the discrimination
between the native and non-native structures (Thomas
and Dill 1996a). Although this approach has been applied
successfully to a contact statistical potential, it is less
likely to work well for the larger parameter space of an
atomic distance-dependent statistical potential, such as
the one developed here.

Calculation of the pair pdf from the distance pdf estimated
from a single sample native structure

We now estimate the pair pdf pð~xi;~xjÞ for all atom pairs
(i,j), using a single sample native structure. A structure is
defined by internal coordinates that are invariant with
respect to translation and rotation. Thus, the interparticle
distance r between ~xi and ~xi is the most relevant internal
coordinate for a pair of atoms. Consequently, the distri-
bution that can be estimated directly from a sample native
structure is the distance pdf for a pair of atom types:

pmnðrÞ ¼ NmnðrÞ=+
ri

NmnðriÞDr; (2)

where m and n denote the atom types and NmnðrÞis the
number of atom type pairs (m,n) at a distance within [r,
r + Dr]. The distance pdf is proportional to the number of
(m,n) pairs in a spherical shell of volume 4pr2Dr; thus,
the density of the (m,n) pairs in the shell is pmnðrÞ=4pr2.
For a finite and nonspherical native structure, only
a fraction jðrÞ of the spherical shell between r and r +
Dr centered on ~xi is occupied by protein atoms
(0# jðrÞ# 1) (Fig. 1A). Thus, the density of the (m,n)
pairs at the distance r is pmnðrÞ=[4pr2jðrÞ].

Next, we need to relate the distance pdf pm;nðrÞ to the
pair pdf pð~xi;~xjÞ. The probability of finding atom i at ~xi
and atom j at ~xj is pð~xiÞpð~xjÞ. Therefore, the pair pdf
pð~xi;~xjÞ is the product of the pair probability pð~xiÞpð~xjÞ
and the (m,n) pair density:

pð~xi;~xjÞ ¼ pð~xiÞpð~xjÞpm;nðrÞ=[4pr2jðrÞ]
¼ pð~xiÞpð~xjÞpm;nðrÞ=nðrÞ } pm;nðrÞ=nðrÞ (3)

where nðrÞ is the normalization function equal to
4pr2jðrÞ, and m and n are the types of atoms i and j,
respectively. As mentioned above, the single-body pdf
pð~xiÞ is the number density of atom i and is ignored
because it does not impact on the ranking of different
conformations of the same protein.

Normalization function n(r; a) for a single sample
native structure

The calculation of the normalization function nðrÞ is not
straightforward because the native structures are finite
and varying in size (Fig. 1A). Therefore, we explicitly
denote nðrÞ as dependent on the size a of the sample
native structure, nðr; aÞ. We define the size a to be the
radius of the sphere of uniform density that has the same
radius of gyration Rg as the sample native structure; thus,
a ¼

ffiffiffiffiffiffiffiffi
5=3

p
Rg. Similarly, for clarity, we also denote the

distance pdf pm;nðrÞ as pm;nðr; aÞ.
The key simplification in the calculation of the nor-

malization function nðr; aÞ is as follows: We construct
a special state (i.e., the reference state) for which the
calculation of nðr; aÞ is analytically tractable and then as-
sume that this nðr; aÞ is applicable to any protein of size a.

Figure 1. Schematic representation of the reference state. (A) An

illustration showing why only a fraction of a spherical shell generally

contributes to the normalization function (Equation 3). (B) A pair of

noninteracting atoms in a protein is modeled by two points positioned

randomly inside a sphere with radius a; the points are at distance r from

each other. The normalization function n(r) in Equation 7 corresponds to

repeating this random assignment for an infinite number of times. (C) The

definition of terms used to write Equations 8–11. The large and small

spheres are the reference and probe spheres, respectively.
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We define the reference state for a sample native structure
with the radius of gyration Rg to be a sphere with the same
radius of gyration and density, but with uncorrelated uni-
formly distributed atomic positions (Fig. 1B); this reference
state is independent of the composition. The assumption
of uncorrelated uniform atomic density is grounded in the
maximum entropy principle corresponding to no prior knowl-
edge about the native structures. It is difficult to justify this
particular reference state, especially its finite spherical at-
tribute, other than by intuition and the performance of the
corresponding statistical potential in protein structure pre-
diction (Results).

According to Equation 3, in a reference state with
uncorrelated positions of atoms i and j [i.e., pð~xi;~xjÞ ¼
pð~xiÞpð~xjÞ], the normalization function nðr; aÞ is equal to
the distance pdf pREFm;n ðr; aÞ. Although pREFm;n ðr; aÞ and
nðr; aÞ for a sphere have already been calculated (Deltheli
1919; Hammersley 1950; Lord 1954; de Smith 1977; Tu
and Fischbach 2002; Garcia-Pelayo 2005), we re-derive
them here for completeness.

We start by placing a stationary point (sp) on the center
of the sphere encompassing the reference state (h ¼ 0)
while allowing a mobile point (mp) to move freely on the
surface of a smaller ‘‘probe’’ sphere at a distance r from
sp (small sphere in Fig. 1C). Because the mobile point
cannot be outside of the reference sphere, the partial
normalization function mðr; aÞ for an atom at the center of
the reference sphere is

mðr; aÞ ¼ 4pr2 r # a
0 r > a

�
(4)

Next, we offset the stationary point from the center of
the reference sphere by distance h# a. For distance r
smaller than a � h, the mobile point must reside inside
the sphere; thus, mðr; aÞ remains 4pr2. For a� h# r#
aþ h, the mobile point touches the reference sphere
surface; thus, mðr; aÞ is proportional to the intersecting
surface area of the probe sphere that remains within the
reference sphere (Wodak and Janin 1980). Therefore,
mðr; aÞ of the offset point is

mðr;a;hÞ¼
4pr2 r < a - h
prðrþa�hÞð1þða�rÞ=hÞ a - h# r# a + h
0 r > a+h

(

(5)

The normalization function is thus determined by
integrating mðr; aÞ over all possible offsets h:

nðr; aÞ ¼
ða

0

mðr; a; hÞh2dh; (6)

which yields the normalization function:

nðr; aÞ ¼

3r2ðr � 2aÞ2ðr þ 4aÞ
16a6

rc > 2a

6r2ðr � 2aÞ2ðr þ 4aÞ
r3
cðr3

c � 18a2rc þ 32a3Þ rc # 2a

,

8>><
>>: (7)

where rc is some upper bound on the range of the
statistical potential. Equation 7 is validated numerically
by the histogram of one million pairs of randomly
generated distances inside a 22 Å sphere (the average
size of a ;150 residue protein domain) (Fig. 2). The most
probable distance lies at ð

ffiffiffiffiffiffiffiffi
105

p
� 5Þa=5 � 1:048a, which

is ;5% greater than the sphere radius. When r is
infinitesimally small, nðr; aÞapproaches r2; as the distance
r increases, nðr; aÞ can be expressed as ra, where a

depends on both the distance r and sphere radius a. The
effective exponent a can be derived by taking the
logarithm and then the first derivative of both sides of
the definition nðr; aÞ ¼ ra; thus,

a ¼ r
d ln nðr; aÞ

dr
,

and finally combining this result with Equation 7 (Fig. 3):

a ¼ 5r2 þ 10ar � 16a2

r2 þ 2ar � 8a2
; r # 2a (8)

As expected, the short and long-range asymptotic be-
haviors of the effective exponent a are a ! 2 as r ! 0
and a ! 0 as r ! ð

ffiffiffiffiffiffiffiffi
105

p
� 5Þa=5, respectively.

Using a sample of many native structures of varying size

We now need to derive the joint pdf from a sample of
many native structures of varying size, which is nontrivial
because both the distance pdf pm;nðr; aÞ and the normal-
ization function nðr; aÞ depend on size a of a sample
structure. We note in passing that if we had a sufficiently

Figure 2. Comparison of the analytical normalization function (line;

Equation 7) with the numerical simulation (points). The simulated sample

includes one- million pairs of points located randomly inside a sphere with

the radius a of 22 Å (Fig. 1); the bin size is 1 Å.
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large sample of native structures, we could subdivide it
into subsets of proteins of equal size and then derive the
joint pdf separately for each subset without the compli-
cation of combining the statistics from structures of
varying size.

The dependence of both pm;nðr; aÞ and nðr; aÞ on protein
size a might suggest that their ratio, pair pdf pð~xi;~xjÞ, also
depends on a. However, we suggest that the pair pdf may
be approximately independent of the protein size. While
we are not able to support this approximation based on
statistics, we can ground it in physics if we assume that
the pair pdf reflects only the potential of mean force
between the corresponding atom types (Equation 12). The
potential of mean force between two atoms in a protein,
in turn, should depend only on their chemical properties
and their distance, not on the protein size. Thus, the pair
pdfs derived from subsets of protein structures of differ-
ent sizes will not vary, except for statistical fluctuations
due to small sample sizes, and can thus be averaged to
obtain a more accurate estimate of the pair pdf.

Calculating DOPE

Based on the arguments and equations above, the com-
plete calculation of DOPE is as follows. First, for each
sample native structure, the distance pdf pm;nðr; aÞ is
estimated by Equation 2; the details about the sample of
the native structures, the sampling of the distances, atom
types, and implementation in MODELLER-8 are de-
scribed in Materials and Methods. The normalization
function nðr; aÞ is calculated from Equation 7 using
a ¼

ffiffiffiffiffiffiffiffi
5=3

p
Rg.

Second, for each atom type pair (m,n) in the sample
native structure, the pair pdf pð~xi;~xjÞ is calculated using
Equations 2 and 3.

Third, the weight ws of the sample native structure is
calculated as the ratio between the number of all atom
pairs in this structure and the number of atom pairs in all
sample structures, irrespective of their types.

Fourth, the pair pdf pð~xi;~xjÞ for the sample of all native
structures is calculated as a weighted sum of the pair pdfs
corresponding to the individual sample structures:

pð~xi;~xjÞ ¼ +
s

wspm;nðr; aÞ=nðr; aÞ (9)

where index s runs over all sample native structures. This
averaging procedure is based on the presumed indepen-
dence of the pair pdf from the protein size, as rationalized
above.

Requirements needed for a physical interpretation of the
joint pdf as the free energy

There are two approximations needed to relate the joint
pdf pð~x1;~x2;~x3 . . . ;~xNÞ (Equations 1–3) derived from
a sample of native structures and the free energy of
a protein in solvent. However, we do not argue that these
approximations are actually accurate or physically cor-
rect. The first approximation is that the pair pdfs pð~xi;~xjÞ
estimated from a sample of known native structures obey
the Boltzmann statistics of a canonical ensemble at some
temperature T (Sippl 1990). While this approximation is
partly validated by the observed Boltzmann statistics of
structural features (e.g., atomic distances) in a set of
known native structures (Finkelstein et al. 1995), serious
concerns about its correct interpretation remain (Finkel-
stein et al. 1995; Thomas and Dill 1996b). The second
approximation is the superposition approximation
(above). Importantly, we note that the derivation of our
statistical potential is entirely independent of the hypo-
thetical relationships outlined in this section.

The joint pdf p defines the N-body correlation function
g (Hill 1956):

pð~x1;~x2; . . . ;~xNÞ ¼ pð~x1Þpð~x2Þ, . . . pð~xNÞgðnÞ
3 ð~x1;~x2; . . . ;~xNÞ; (10)

The total free energy G of the system can then be
expressed in terms of the correlation function g:

Gð~x1;~x2; . . . ;~xNÞ ¼ �kBT ln gðnÞ 3 ð~x1;~x2; . . . ;~xNÞ (11)

where kB is the Boltzmann constant. Therefore, an ap-
proximate free energy of a system is (Equations 1, 3, 9, 10):

Gð~x1;~x2; . . . ;~xNÞ � �kBT+
N
i6¼jln g

ð2Þ
i;j ðrÞ

¼ +N

i 6¼j
�ui;jðrÞ (12)

where g
ð2Þ
i;j ðrÞ is the radial distribution function equal to

pm;nðrÞ=nðrÞ, and �ui;jðrÞ is the potential of mean force for
a pair of atoms [�ui;jðrÞ ¼ �kBT ln g

ð2Þ
i;j ðrÞ].

Because pREFm;n ðrÞ ¼ nðrÞ and thus �ui;jðrÞ ¼ 0 for the
reference state as defined above, the potential of

Figure 3. The effective exponent a of a sphere as a function of

interparticle distance r (Equation 8). The dashed, thin, and thick curves

show the effective exponents a(r) for sphere radii a of 20, 22, and 24 Å,

respectively. The horizontal dashed line marks the effective exponent used

by DFIRE (a ¼ 1.61).
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mean force derived from the observed distance pdf pm;nðrÞ
is

�ui;jðrÞ ¼ �kBT lnð
pm;nðrÞ
pREFm;n ðrÞ

Þ � �kBT lnð
NOBS

m;n ðrÞ
NREF

m;n ðrÞ
Þ (13)

where NOBS
m;n ðrÞ and NREF

m;n ðrÞ are the numbers of atom
type pairs (m,n) at a distance r within [r, r + Dr] for the
‘‘interacting’’ real system and the ‘‘noninteracting’’ reference
state, respectively. This interpretation of our reference state
is identical to that of the ‘‘discharged’’ state used for free
energy calculations in statistical mechanics (Onsager 1933;
Hill 1956). Equation 13 establishes the relation between the
statistical potential derived from a sample of known structure
and the potential of mean force.

Results

Comparison of distance-dependent statistical potentials

We compare the distance dependence of DOPE, DFIRE,
and RAPDF for four representative pairs of atom types
(main chain–main chain, main chain–side chain, hydro-

phobic side chain–hydrophobic side chain, and polar side
chain–hydrophobic side chain) (Equation 12) (Fig. 4). For
all four pairs, DOPE has a steeper repulsion at short
distances. The Ile Ca–Leu Cd and Asp Cb–Leu Cb pairs
(i.e., main chain–side chain and polar side chain–hydro-
phobic side chain; Fig. 4B,D) are very similar for all three
statistical potentials. The structured distance dependence
of the Cys N–Trp O main chain–main chain pair is
present in DOPE as it is in DFIRE and RAPDF (Fig.
4A). The minor difference between DOPE and DFIRE
lies at ;2.75 Å, where a small peak in DFIRE is absent in
DOPE. The difference between DOPE and DFIRE is
more pronounced for the Ile Cb–Leu Cb hydrophobic side
chain–hydrophobic side chain pair, where DOPE lies
between DFIRE and RAPDF.

Native state detection

We first assess DOPE in terms of its ability to identify the
native states in five multiple target decoy sets (Table 1),
including 4state_reduced, fisa, fisa_casp3, lmds, and
lattice_ssfit decoy sets from the Decoys ‘R’ Us Web site
(http://dd.stanford.edu). This assessment is relative to five
other previously published scoring functions, including

Figure 4. Distance dependence of DOPE, DFIRE, and RAPDF. (A) Cys N atom–Trp O atom. (B) Ile Ca atom–Leu Cd atom. (C) Ile

Cb atom–Leu Cb atom. (D) Asp Cb atom–Leu Cb atom. The DFIRE and RAPDF plots are reproduced from Zhou and Zhou (2002).

All statistical potentials are shown with linear interpolation between their estimated values at discrete distances (cf. when using

DOPE, interpolation by cubic splines is applied, as described in Materials and Methods, resulting in smoother curves than shown

here).
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DFIRE, Rosetta, ModPipe-Pair, Modpipe-Surf, and Mod-
pipe-Comb (see Materials and Methods). DFIRE, in
particular, is one of the best performing atomic dis-
tance-dependent statistical potentials (Zhou and Zhou
2002). DOPE correctly identifies 28 native structures
for 32 targets in five multiple target decoy sets, while
DFIRE, Rosetta, ModPipe-Pair, Modpipe-Surf, and Mod-
pipe-Comb are successful for 27, 14, 19, 7, and 18 targets,
respectively (Table 1). All scores miss the native state of

1fc2 in the fisa set (except for Modpipe-Surf) and 1b0n-
B, 1bba, and 1fc2 in the lmds set.

We also tested all six scoring functions on the 20
targets in the moulder decoy set derived by iterative
target-sequence alignment and comparative model
building (Materials and Methods). DOPE, DFIRE,
Rosetta, ModPipe-Pair, and Modpipe-Comb are all able
to identify 19 out of the 20 native structures from the
total of 301 conformations. The single failure for these

Table 1. Assessment of six scoring functions by the rank (native rank, NR) of the native structure in five
multiple target decoy sets from Decoys ‘R’ Us

DFIRE Rosetta ModPipe-Pair ModPipe-Surf ModPipe-Comb DOPE

4state-reduced NR NR NR NR NR NR

1ctf 1 1 1 1 1 1

1r69 1 2 1 17 1 1

1sn3 1 1 1 7 1 1

2cro 1 5 1 103 1 1

3icb 4 6 15 33 8 1

4pti 1 1 1 71 1 1

4rxn 1 1 1 18 1 1

Correct 6 4 6 1 6 7

fisa

1fc2 254 158 491 1 453 375

1hdd-C 1 90 293 18 135 1

2cro 1 26 11 146 19 1

4icb 1 1 196 2 167 1

Correct 3 1 0 1 0 3

fisa_casp3

1bg8-A 1 1068 1 1180 282 1

1bl0 1 960 4 912 86 1

1jwe 1 1177 1 1119 6 1

Correct 3 0 2 0 0 3

lmds

1b0n-B 430 300 56 186 18 34

1bba 501 174 501 117 444 501

1fc2 501 291 325 54 222 476

1ctf 1 1 1 1 1 1

1dtk 1 9 4 1 1 1

1igd 1 1 1 3 1 1

1shf-A 1 5 24 18 7 1

2cro 1 2 4 28 12 1

2ovo 1 29 5 8 2 1

4pti 1 4 1 44 1 1

Correct 7 2 3 2 4 7

lattice_ssfit

1beo 1 1 1 1 1 1

1ctf 1 1 1 1 1 1

1dkt-A 1 1 1 35 1 1

1fca 1 1 1 4 1 1

1nkl 1 1 1 1 1 1

1pgb 1 1 1 3 1 1

1trl-A 1 45 1 123 1 1

4icb 1 1 1 3 1 1

Correct 8 7 8 3 8 8

Correct prediction 27 14 19 7 18 28

The tested scoring functions (see Materials and Methods) are indicated in columns, the decoy sets (see Materials and
Methods) and the PDB codes of their targets are indicated in rows. The DFIRE assessment is taken from the original
publication (Zhou and Zhou 2002). (Correct prediction) The total number of correct predictions (for all five decoy sets) by the
corresponding scoring function.
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five scores was the only NMR structure, 2pna. Mod-
pipe-Surf failed to identify two native structures (2pna
and 1mup).

For all six decoy sets, DOPE correctly identifies 47
native states for 52 targets (90%), while DFIRE, Rosetta,
ModPipe-Pair, Modpipe-Surf, and Modpipe-Comb suc-
ceed in 46, 33, 38, 25, and 37 cases (88%, 63%, 73%,
48%, and 71%), respectively.

Correlation between the score and model error

The percentage of detected native states provides a useful
but incomplete indication of the accuracy of a scoring
function. In particular, it does not describe the correlation
between the score of a model and its structural similarity
to the native state, suggested by the funnel-shaped free
energy landscape of protein folding. To quantify these
score–error correlations for the six scoring functions, we
calculated the individual and average score–error corre-
lation coefficients between the scores and the Ca RMS
errors for the 4state_reduced decoy set (Table 2). Mod-
Pipe-Pair yields the highest average score–error correla-
tion coefficient (0.69) among the six tested scoring
functions, with DOPE and Modpipe-Comb following
closely second (0.67). Moreover, ModPipe-Pair and
DOPE both have the highest score–error correlation in
three out of seven individual targets in the set.

The score–error correlation coefficients were also
calculated for the moulder decoy set (Table 3A). The
examples of high, medium, and low DOPE score–error
correlation coefficients for the 20 targets in the moulder
test set are 0.92 (1bbh), 0.84 (1eaf), and 0.67 (1cew),
respectively (Fig. 5). The score–error correlation coef-
ficients from the moulder decoy set are generally higher
than those for the 4state_reduced set. The average DOPE
score–error correlation coefficient over 20 targets (0.87)
is slightly higher than that of DFIRE and Rosetta (0.85),
while the coarse-grained scores tend to have lower
correlation coefficients; the ModPipe-Comb average cor-
relation is 0.82, and the ModPipe-Pair average correlation

is 0.73 (Table 3A). Notably, the DOPE score– error
correlation coefficients for nine out of the 20 targets are
$0.9, indicating a better performance of DOPE compared
to DFIRE (6) and Rosetta (4).

The high score–error correlation of DOPE suggests
a relatively useful description of the non-native portion of
the free energy surface. As a result, we expect DOPE to
be more suitable than the alternative scoring functions for
refining non-native structures as well as for selecting the
most accurate model among a set of decoys without the
native structure.

Selection of the most accurate non-native model

Identification of the non-native structure closest to the
native structure among a set of decoys is generally
significantly more difficult than identification of the
native structure. Even the actual free energy function
would generally not succeed if the best model were far
enough from the native state. Yet, it is this more difficult
task that needs to be performed in realistic model assess-
ments where the native structure is not available. There-
fore, to further test the practical utility of DOPE, we
assess each of the 300 models of the 20 targets in the
moulder decoy set by DOPE and the five other scoring
functions. For the moulder decoy set, DOPE is the most
accurate score according to three assessment measures
(Table 3B–D) as follows.

Using DRMSD as the accuracy criterion, DOPE is the
best of all six tested scores with average and median
DRMSDs of 0.58 Å and 0.30 Å, respectively. DOPE
outperforms DFIRE, Rosetta, and ModPipe-Comb, whose
average (median) DRMSDs are 0.69 Å (0.44 Å), 0.87 Å
(0.43 Å), and 1.23 Å (0.76 Å), respectively. In four cases,
DOPE selects a model with the lowest DRMSD, a better
performance than DFIRE and Rosetta (three cases each).
The two structures (1cau and 1cew) for which DOPE
failed to select a model with DRMSD < 2.0 Å are both
difficult cases in the sense that they failed at least half of
the tested scoring functions.

Table 2. Pearson correlation coefficient r between the Ca RMS error of a decoy and its score

Target DFIRE Rosetta Modpipe-Pair Modpipe-Surf Modpipe-Comb DOPE

1ctf 0.70 0.68 0.73 0.64 0.75 0.74

1r69 0.64 0.45 0.77 0.50 0.76 0.70

1sn3 0.30 0.37 0.57 0.32 0.51 0.47

2cro 0.75 0.63 0.72 0.29 0.71 0.77

3icb 0.82 0.73 0.82 0.69 0.83 0.84

4pti 0.44 0.51 0.68 0.21 0.58 0.51

4rxn 0.65 0.51 0.60 0.29 0.54 0.65

Average 0.61 0.55 0.69 0.42 0.67 0.67

The six scoring functions are tested with the 4state_reduced decoy set. The DFIRE assessment is taken from the
original publication (Zhou and Zhou 2002).
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Table 3. Assessment of the six scoring functions by their ability to select the best model in the moulder decoy set

Target DFIRE Rosetta ModPipe-Pair ModPipe-Surf ModPipe-Comb DOPE

A. The score–error correlation coefficient

1bbh 0.93 0.80 0.84 0.85 0.89 0.92

1c2r 0.92 0.81 0.66 0.84 0.82 0.93

1cau 0.76 0.86 0.57 0.67 0.66 0.80

1cew 0.68 0.75 0.59 0.61 0.63 0.68

1cid 0.88 0.86 0.54 0.83 0.77 0.89

1dxt 0.90 0.91 0.89 0.84 0.92 0.94

1eaf 0.82 0.80 0.74 0.80 0.81 0.84

1gky 0.57 0.79 0.85 0.84 0.87 0.73

1lga 0.89 0.89 0.83 0.82 0.87 0.91

1mdc 0.84 0.84 0.77 0.79 0.82 0.88

1mup 0.87 0.88 0.68 0.87 0.78 0.85

1onc 0.94 0.91 0.73 0.90 0.89 0.93

2afn 0.83 0.90 0.73 0.90 0.87 0.87

2cmd 0.88 0.87 0.86 0.81 0.86 0.90

2fbj 0.84 0.88 0.75 0.79 0.82 0.84

2mta 0.92 0.78 0.60 0.63 0.72 0.92

2pna 0.89 0.79 0.68 0.87 0.83 0.90

2sim 0.88 0.88 0.88 0.49 0.90 0.90

4sbv 0.77 0.83 0.68 0.66 0.75 0.83

8i1b 0.91 0.90 0.74 0.86 0.85 0.90

Average 0.85 0.85 0.73 0.78 0.82 0.87

Median 0.88 0.86 0.73 0.82 0.83 0.89

B. DRMSD

1bbh 0.00 0.07 0.00 0.07 0.07 0.00

1c2r 0.02 0.86 1.79 3.25 2.00 0.00

1cau 2.92 0.95 8.70 0.42 0.42 2.92

1cew 3.47 2.73 2.06 2.16 2.06 2.16

1cid 0.08 0.37 1.15 1.15 1.15 1.15

1dxt 1.11 0.55 1.03 4.18 0.00 0.55

1eaf 0.47 0.34 0.99 1.68 1.68 0.47

1gky 1.14 0.00 0.48 0.01 0.01 0.01

1lga 0.80 0.00 2.91 6.33 2.70 0.99

1mdc 0.22 0.05 0.74 3.75 0.74 0.02

1mup 0.67 0.08 0.40 0.69 0.40 0.26

1onc 0.40 0.48 0.72 0.40 0.72 0.35

2afn 0.12 0.00 0.88 0.50 0.71 0.12

2cmd 0.23 0.68 1.07 2.75 0.84 0.84

2fbj 0.91 0.91 2.80 0.26 2.80 0.91

2mta 0.63 2.85 2.34 0.65 0.57 0.21

2pna 0.00 0.07 0.60 0.00 0.07 0.00

2sim 0.16 0.27 0.13 1.26 1.12 0.16

4sbv 0.00 5.58 5.29 5.93 5.78 0.00

8i1b 0.50 0.50 1.35 0.78 0.78 0.50

Average 0.69 0.87 1.77 1.81 1.23 0.58

Median 0.44 0.43 1.05 0.97 0.76 0.30

C. 20% enrichment

1bbh 4.67 4.33 4.08 4.08 4.58 4.83

1c2r 4.08 3.58 3.33 3.25 3.75 4.25

1cau 3.50 3.83 3.17 3.83 3.67 3.33

1cew 3.92 3.42 3.50 3.75 3.75 4.25

1cid 4.42 4.33 3.33 4.00 4.08 4.42

1dxt 3.17 3.25 3.00 2.75 3.00 3.25

1eaf 4.08 3.75 3.33 3.83 3.67 3.92

1gky 2.50 2.83 2.67 2.67 2.92 2.50

1lga 4.08 3.25 3.17 2.75 3.17 3.75

1mdc 4.25 4.00 3.42 3.50 3.92 4.17

1mup 4.33 4.58 4.25 4.33 4.17 4.58

1onc 4.17 4.17 4.17 4.50 4.33 4.17

(continued)
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DOPE also performs better than other scores according
to the n% enrichment measures (Table 3C,D). The DOPE
average 20% enrichment for the 20 targets is 3.92,
compared to 3.85, 3.70, and 3.78 for DFIRE, ModPipe-
Comb, and Rosetta, respectively. Ten-percent enrichment
results in a similar ranking of the scoring functions. The
difference in enrichment ratios between DOPE and
DFIRE is more pronounced at the 10% threshold (6.25
compared to 6.00) than at the 20% threshold (3.92
compared to 3.85). This difference is primarily due to
the relatively higher accuracy of DOPE in the near-native
region.

The relative accuracy of a score can also be illustrated
by the number of the 10% most accurate models identi-
fied by the score; there are 600 such top 10% models in
the moulder decoy set (10% 3 20 targets 3 300 models
per target). DOPE identifies 375 of these models, which is
15, 26, and 28 more than identified by DFIRE, Rosetta,
and ModPipe-Comb, respectively.

Discussion

We derived an atomic distance-dependent statistical

potential from known native protein structures (DOPE),
based on probability theory and without recourse to

statistical mechanics (see Theory). Moreover, we related
DOPE to a potential of mean force, based on several

customary assumptions. We benchmarked DOPE and five
other previously published scoring functions by using five

multiple target decoy sets from the Decoys ‘R’ Us Web
site as well as a set of 300 comparative models of varying

accuracy for each one of 20 different sequences of known

structure (see Results). DOPE is the best performing
function in the detection of the native state, the correla-

tion between the score and Ca RMS error, and the
identification of the most accurate non-native model.

The improvement results primarily from a more rigorous
treatment of the reference state in the derivation of

DOPE. Next, we first compare the theory of DOPE with

Table 3. Continued

Target DFIRE Rosetta ModPipe-Pair ModPipe-Surf ModPipe-Comb DOPE

2afn 2.83 3.58 2.92 3.33 3.75 3.00

2cmd 3.92 4.00 3.25 3.42 3.50 3.75

2fbj 4.17 4.17 3.75 3.83 3.92 4.08

2mta 3.92 3.33 2.25 3.17 3.25 4.08

2pna 4.33 3.83 3.83 4.00 4.17 4.50

2sim 3.75 3.92 3.25 2.75 3.42 3.83

4sbv 3.67 4.17 3.83 3.33 4.00 4.17

8i1b 3.25 3.25 2.33 3.25 3.00 3.58

Average 3.85 3.78 3.34 3.52 3.70 3.92

Median 4.00 3.83 3.33 3.46 3.75 4.08

D. 10% enrichment

1bbh 7.00 7.33 5.00 8.33 7.33 8.67

1c2r 6.33 8.00 5.00 5.33 7.00 7.67

1cau 5.00 7.00 4.33 6.67 5.67 5.00

1cew 4.33 3.00 4.00 3.00 3.33 4.00

1cid 5.33 5.67 4.33 5.67 5.00 5.67

1dxt 5.33 4.33 5.00 4.67 5.33 6.67

1eaf 5.00 7.00 5.00 6.67 6.00 6.00

1gky 8.00 7.00 8.00 8.33 9.00 8.67

1lga 5.33 3.33 2.67 3.00 2.33 5.33

1mdc 7.67 6.00 4.33 6.33 6.00 7.67

1mup 8.00 6.33 7.33 7.67 7.67 8.67

1onc 7.33 6.67 6.67 7.67 7.00 7.67

2afn 4.67 6.00 5.00 5.67 6.67 4.00

2cmd 5.67 5.33 3.33 4.33 4.33 5.00

2fbj 7.33 7.00 7.00 6.67 7.33 6.33

2mta 4.00 5.00 2.67 4.33 3.67 4.33

2pna 6.33 5.33 6.33 7.33 6.67 7.33

2sim 6.67 4.67 4.00 4.00 4.00 6.00

4sbv 5.00 6.00 5.67 4.33 5.67 5.00

8i1b 5.67 5.33 4.00 4.67 5.67 5.33

Average 6.00 5.82 4.98 5.73 5.78 6.25

Median 5.67 6.00 5.00 5.67 5.83 6.00

The five criteria are (see Materials and Methods): (A) The score–error correlation coefficient (best value, 1.00); (B) DRMSD (best value,
0 Å); (C) 20% enrichment (best value, 5); and (D) 10% enrichment (best value, 10).
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other existing methods for deriving statistical potentials;
second, we discuss the importance of the size of the
spherical reference state of DOPE; and finally, we de-
scribe four regimes where DOPE tends to be less

accurate: incomplete models, small structures, low-accu-
racy models, and NMR structures. We conclude by listing
several current applications of DOPE.

Comparison of statistical potential reference states

All statistical potentials depend on the same protein
structure database (i.e., PDB). Therefore, the differences
between the distance pdfs pm;nðrÞ of various statistical
potentials depend only on the specific choice of the
sample structures and are not significant conceptually.
In contrast, significantly different definitions of the
distance pdf for the reference state pREFm;n ðrÞ (Equation
3), which is equal to the normalization function nðrÞ
(Equation 3) or equivalently NREF

m;n ðrÞ (Equations 2 and 3),
have been used in the derivation of different statistical
potentials. For example, RAPDF uses a conditional pdf to
construct a distance pdf for the reference state (Samudrala
and Moult 1998), and AKBP relies on a mole fraction-
dependent reference state function (Lu and Skolnick 2001).
We now compare the DOPE nðrÞ function to that of DFIRE,
which is the most similar statistical potential to DOPE.

A physical picture of noninteracting atoms in a finite
spherical volume has inspired the DFIRE reference state
(Zhou and Zhou 2002; Zhang et al. 2004), just as it did for
DOPE. The DFIRE normalization function is nðrÞ ¼ ra,
relying on a constant effective exponent parameter a that
is used for all sample native structures irrespective of
their size. The optimal value of a was found empirically
to be 1.57 (Zhou and Zhou 2002) and subsequently

Figure 5. Score–error correlation (see Materials and Methods) for

DOPE, using three targets from the moulder decoy set. (A) High

correlation, correlation coefficient r ¼ 0.92 (1bbh). (B) Medium correla-

tion, r ¼ 0.84 (1eaf). (C) Relatively low correlation, r ¼ 0.68 (1cew).

Figure 6. Sample structure assessment that benefits from using the correct reference sphere size. The best-scored model of the target

1bbh in the moulder decoy set with (A) DOPE based on an underestimated radius of the reference sphere a of 16 Å. The Ca RMS error

of this model is 15.4 Å. (B) When DOPE is calculated with the size a of 23 Å, it correctly scores the native structure better than any of

the 300 decoys.
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refined to 1.61 (Zhou and Zhou 2002, 2003). The DFIRE
reference state captures an important feature of particle
density in a finite spherical volume; namely, it does not
grow with r2, but with ra, where a is smaller than 2.

DOPE goes a step further in the definition of the
reference state and the corresponding normalization
function. The DOPE reference state is a sphere whose
size reflects that of the sample native structure, but with
a uniform uncorrelated atom density; the reference state
is independent of the composition of the protein. In
contrast to DFIRE, the DOPE normalization function is
derived analytically, without any adjustable parameters. It
turns out that a is not a constant but, in fact, a function of
both the distance between the interacting atoms r and the
sample native structure size a (Equation 8). Thus, the
DFIRE reference state can be considered to be an
empirical approximation of the DOPE theory. For exam-
ple, the average (over r from 0 to 15 Å) effective
exponent a for a 22 Å reference sphere is 1.63, which
is very close to the effective exponent a of DFIRE (1.61).
The DOPE reference state results in a more accurate (see
Results) and presumably more broadly applicable statis-
tical potential; in principle, even though derived from
sample native structures of different sizes, it is applicable
to models of any size. Moreover, it affords a greater
opportunity for generalization to other kinds of statistical
potentials and other future developments.

The size of the reference state

The reference state and the corresponding normalization
function nðrÞ depend on the reference sphere radius a (see
Theory). To further illustrate the impact of the reference
sphere on the accuracy of the DOPE potential, we derived
a version of DOPE in which the pair pdf in Equation 3 was
calculated with the normalization function for the single
sphere size a. This limited version of DOPE is termed
DOPE-a. DOPE-a is highly inaccurate when derived with
an incorrect reference sphere radius a. For example, DOPE-
16 cannot identify the native structure of 1bbh (Fig. 6A). In
contrast, DOPE-24 does correctly identify the 1bbh native
state (Fig. 6B). The scoring function derived from a refer-
ence state that is too small results in an erroneous
preference for loosely packed structures because the
short-range interactions are deemed to be more repulsive
by the corresponding DOPE-a than by DOPE.

We also tested DOPE-24 on the five Decoys ‘R’ Us
decoy sets to elucidate the importance of using the
multiple reference states in the derivation of DOPE. In
summary, DOPE-24 is less accurate than DOPE. DOPE-
24 successfully ranks all 18 native structures in the
4state_reduced, fisa_casp3, and lattice_ssfit as the best
scored model. However, DOPE-24 performs worse than
DOPE on the fisa and lmds decoy sets, where DOPE-24

misidentified nine native structures, five more than did
DOPE. Overall, DOPE-24 successfully identified only 23
native states. This comparison emphasizes the importance
of tabulating the distance pdfs for different pairs of atom
types by using a reference state of the appropriate size;
the ‘‘one-size-fits-all’’ reference state incorrectly scales
the contributions from proteins of all but one size, leading
to a less accurate statistical potential.

Accuracy of DOPE as the function of completeness of
assessed model

In general, the failures in picking the native structure may
be caused by a number different factors, which will be
discussed in the following four sections. The first of
these factors is the incompleteness of the assessed model.
For example, the native interface between two domains in
a single protein may be needed for its stability. In such
a case, it is conceivable that neither a physics-based
energy function nor a statistical potential will score the
native state of an isolated domain correctly. There is not
much that can be done about this problem, other than
striving to assess biologically stable units of structure. A
possible example of such a failure is 1b0n-B, whose
crystal structure indicates that the stable unit is a dimer,
not a monomer.

Accuracy of DOPE as the function of assessed model size

Yet another difficulty in model assessment is a small size
of an assessed model; for example, 1b0n-B, 1bba, and
1fc2 have only 31, 36, and 43 residues, respectively.
DOPE, like other statistical potentials, is less accurate for
smaller proteins (Table 1). There are two potential
sources of errors in assessing small proteins. First, small
proteins are assessed by a smaller number of pairwise
terms, thus resulting in a larger statistical error of the
final score. The number of individual pairwise terms in
the scoring function is proportional to the square of the
protein sequence length; thus, the relative statistical
fluctuation of the final score (Equation 12) is inversely
proportional to the sequence length.

Second, the statistical mechanics of large proteins,
which contribute most of the distances toward the
construction of a statistical potential, may be different
from that of small proteins, in addition to the differences
accounted for by varying a. For example, the relatively
more aspherical structure of small protein domains makes
the spherical reference states less accurate. Also, a small
protein domain usually lacks a well-packed hydrophobic
core. To maintain the 1:1 hydrophobic-to-polar residue
ratio found in these proteins, a substantial fraction of
hydrophobic residues must be exposed (Shen et al. 2005).
This irregularity is not captured well by a statistical
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potential and thus causes assessment errors. In an attempt
to quantify this problem, we derived and tested a statisti-
cal potential by using only small protein structures (data
not shown). This specialized statistical potential did not
perform better than the statistical potential constructed
from structures of all sizes (i.e., DOPE), presumably
because of the first problem that apparently cancels the
gains made by using the specialized sample consisting of
only small native structures.

Accuracy of DOPE as the function of model accuracy

The performance of DOPE in selecting the most accurate
model tends to increase with the accuracy of the best
model in the decoy set. The average Ca DRMSD, score–
Ca RMS error correlation coefficient, and 10% enrich-
ment for high-accuracy targets (best model Ca RMS error
<3.0 Å) in the moulder decoy set are 0.41 Å, 0.90, and
6.62, respectively. All three measures are significantly
better than the averages of 0.58 Å, 0.87, and 6.25 for all
20 targets in the decoy set. This trend is also observed for
other scoring functions to a lesser extent; for example, the
average correlation coefficient of the Rosetta score
exhibits slight improvement from 0.846 to 0.854 when
limited to high-accuracy targets.

The dependence of DOPE performance on model
accuracy is illustrated further by the relation between
the median Ca RMS error and the score–error correlation
coefficient for the 20 targets in the moulder decoy set
(Fig. 7). The DOPE score–error correlation begins to
decrease when the median model Ca RMS error is greater
than ;10 Å. In contrast, the Rosetta score–error correla-
tion coefficients remain relatively stable (although lower
than those of DOPE for median model Ca RMS error <10
Å) in all model accuracy ranges. This difference between
DOPE and Rosetta is presumably due to the different
information used in the construction of the two scoring
functions. By construction, DOPE is based entirely on the
native structures and lacks the ability to discriminate

models with large Ca RMS errors. In contrast, Rosetta
contains several physics-based terms, including electro-
statics, hydrogen bonds, and solvation, making it possible
at least in principle to assess non-native models more
accurately based on the laws of physics. In conclusion,
a combination of physics-based energy terms and DOPE
may be able to improve DOPE’s correlation with model
accuracy when the Ca RMS error is large.

A more thorough comparison of the scoring functions
would include a local minimization of each model with
respect to each scoring function before the calculation of
the final assessment score. Such a relaxation would make
the results less sensitive to relatively small steric clashes
in the models, which are especially problematic for
scoring functions with stiff steric repulsion terms, such
as Rosetta and molecular mechanics force fields in
general. It was not feasible here to perform such mini-
mizations with all tested scoring functions.

Assessment of NMR structures

Another difficulty is the assessment of structures de-
termined by NMR spectroscopy. For example, neither
DOPE nor DFIRE is able to identify the native structure
of 2pna in the moulder decoy set. Initially, the 2pna native
structure was arbitrarily chosen to correspond to the first
of the 22 separately listed structures in the 2pna PDB file.
To elaborate, we also assessed all 22 native structures in
the PDB file; the corresponding DOPE scores ranged
from �8997 to �9391. However, even the best scoring
native structure does not score better than some of the
decoys, although the rank does improves from 103 to 81
for the first and best scoring native structures, respec-
tively. The apparent decrease of DOPE’s ability to
identify native NMR structures compared to X-ray struc-
tures is presumably a consequence of both the derivation
of DOPE from X-ray structures and the inherent relative
inaccuracy of the NMR structures compared to X-ray
structures. It is conceivable that a DOPE-like score
derived exclusively from the NMR structures will per-
form better than the current DOPE.

Applications of DOPE

Protein structure scoring functions have many applica-
tions (see introductory section). To facilitate applications
of DOPE in particular, we implemented it in MODEL-
LER-8, using cubic splines to interpolate between sam-
pled points for smooth function values and first
derivatives (see Materials and Methods) (http://salilab.
org/modeller) (Sali and Blundell 1993; Fiser et al. 2000).
This implementation allows us to use DOPE for both
assessment of given structures as well as their refinement
with optimization methods that depend on first derivatives,

Figure 7. Score–error correlation coefficient as a function of the median

model accuracy for the 20 targets in the moulder decoy set. (Filled circles)

DOPE, correlation coefficient of �0.62; (open circles) Rosetta, correlation

coefficient of �0.27.
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such as conjugate gradients and molecular dynamics. It also
allows us to benefit from DOPE combined together with
other scoring functionals that have been already incorpo-
rated in MODELLER.

So far, DOPE has already been applied to ab initio
protein structure prediction (Colubri et al. 2006), protein–
protein docking (Shen et al. 2005), various problems in
comparative modeling, including fold assignment, tem-
plate selection, sequence–structure alignment (John and
Sali 2003; Eramian et al. 2006; Pieper et al. 2006), loop
modeling (M.-Y. Shen and A. Sali, unpubl.), side chain
modeling (B. Webb and A. Sali, unpubl.), refinement of
whole models (B. Webb and A. Sali, unpubl.), and model
assessment (Eramian et al. 2006), the modeling of
quaternary structure restrained by small angle scattering
spectra (F. Foerster, D. Agard, and A. Sali, unpubl.), as
well as fitting into cryo-electron microscopy mass density
maps combined with comparative modeling (Topf and
Sali 2005; Topf et al. 2006).

In the future, further improvements and generalizations of
DOPE will be facilitated by its rigorous statistical formu-
lation, with clear assumptions and approximations, free of
adjustable parameters. Ongoing work includes a comparison
between statistical and physics-based potentials, which may
result in a combined function with better accuracy in non-
native regions, adapting the potential for maximum accu-
racy with small proteins, generalization of statistical poten-
tials to multibody forms with a rigorous reference state, and
inclusion of information about sequences that do not fold
into a given native structure as well as conformations that
are not the native structure for a given sequence.

Materials and methods

Sample native structures

The sample of the native structures used for the calculation of
DOPE contains 1472 representative single chains from the PDB,
determined by crystallography at #1.8 Å resolution and with an
R-factor #0.25. These representative structures share <30%
sequence identity with each other. The list was constructed with
the PISCES Web server (Wang and Dunbrack 2003). No effort
was made to exclude chains with chain breaks, ligands, and
quaternary interactions.

Implementation of DOPE

We calculated DOPE for all pairs of non-hydrogen atoms in
each of the 20 standard residue types, ignoring the N-terminal
and C-terminal nitrogen and oxygen atoms, respectively. Thus,
there are a total of 158 residue-dependent atom types. Nine of
these atom types include differently labeled but chemically
equivalent atoms (i.e., NH1 and NH2 in Arg, OD1 and OD2 in
Asp, OE1 and OE2 in Glu, CD1 and CD2 in Leu, CD1 and CD2
in Phe, CE1 and CE2 in Phe, CD1 and CD2 in Tyr, CE1 and CE2
in Tyr, and CG1 and CG2 in Val). The possibility of equivalent

atom pairs existing in different protonation states (e.g., OD1 and
OD2 in Asp) was not addressed here. Such alternative assign-
ments are difficult to resolve because of the absence of the
experimentally determined positions of the hydrogen atoms in
most of the sample structures, although an iterative scheme to
address the problem has been described recently (Weichen-
berger and Sippl 2006).

DOPE was tabulated for distances from 0 to 15 Å (rc), with an
interval of 0.5 Å (DR). These values were based on prior work
(Melo et al. 2002; Zhou and Zhou 2002). The interval counts are
converted into the DOPE scores, as described in the Theory
section, except for counts of zero, which are assigned a DOPE
score of 10, corresponding to the least favorable score.

DOPE was implemented in MODELLER-8 (http://salilab.org/
modeller) (Sali and Blundell 1993) and the molecular dynamics
package TINKER (Pappu et al. 1998) (http://dasher.wustl.edu).
The MODELLER implementation relies on cubic splines (Press
1992) that allow us to smoothly interpolate between the sampled
histogram points of DOPE as well as analytically calculate its
continuous first derivatives. Thus, we can use DOPE, potentially
combined with other scoring functions, for an optimization of
a given model, in addition to its assessment.

Tested scoring functions

We assessed DOPE against five other scoring functions: DFIRE
(Zhou and Zhou 2002), Rosetta (Simons et al. 1997, 1999;
Misura et al. 2006), as well as ModPipe-Surf, ModPipe-Pair, and
ModPipe-Comb (Melo et al. 2002). This selection of scores
includes both single-body and two-body scoring functions, as
well as coarse-grained and all-atom scoring functions. The
coarse-grained residue-based scores are ModPipe-Surf (single-
body), ModPipe-Pair (two-body), and ModPipe-Comb (com-
bined). The all-atom distance-dependent statistical potentials
are DOPE and DFIRE. Rosetta is an all-atom scoring function
that includes both physics-based models and statistical poten-
tials, quantifying stereochemistry, nonbonded interactions, and
solvation.

We calculated the Rosetta score by the Rosetta program,
kindly provided by the authors, using standard argument values
(i.e., -score). The DOPE and three ModPipe scores were
calculated by MODELLER-8 (http://salilab.org/modeller). We
calculated the DFIRE scores for the moulder decoy set by the
DFIRE program, also kindly provided by the authors, while the
assessments of DFIRE by the five Decoys ‘R’ Us decoy sets
were taken from the original description of DFIRE (Zhou and
Zhou 2002).

Decoy sets of protein structures

Six multiple decoy sets, including the 4-state_reduced, fisa,
fisa_casp3, lmds, lattice_ssfit, and moulder decoy sets, were
used to evaluate the performance of the DOPE statistical
potential. The first five decoy sets are available through Decoys
‘R’ Us (http://dd.stanford.edu). The 4state-reduced decoy set,
containing from 632 to 689 models per target (seven targets in
total), was generated using a four-state off-lattice model with
a conformational relaxation method (Park and Levitt 1996).
The fisa and fisa_casp3 decoy sets with four and three targets
(500–1400 models per target), respectively, were obtained
using a combination of a Bayesian scoring function and a
simulated annealing protocol (Simons et al. 1997, 1999). The
lmds decoy set with 215–500 models for each one of 10

Statistical potential for protein structure assessment

www.proteinscience.org 2521

JOBNAME: PROSCI 15#11 2006 PAGE: 15 OUTPUT: Friday October 13 03:58:50 2006

csh/PROSCI/125778/ps0624166



primarily short targets, was obtained by a local optimization
method and a reduced ENCAD energy function (Keasar and
Levitt 2003). The largest lattice_ssfit decoy set, containing 2000
decoys for each of eight targets, was generated using a tetrahe-
dral lattice model with the all-atom ENCAD energy function
(Xia et al. 2000).

The moulder decoy set is derived by iterative target-template
alignment and comparative model building of 20 target sequen-
ces only remotely related to their template structures, relying on
MODELLER-6 (John and Sali 2003); it contains 300 models for
each target, based on a wide range of target-template alignment
accuracy.

All the target native structures in all decoy sets were de-
termined by X-ray crystallography, except for 1bba in lmds and
2pna in moulder, which were determined by NMR spectroscopy.

Assessment of scoring function accuracy

Scoring functions were tested by five different criteria: First, the
rank of the native structure in the list of decoys sorted by the
tested score (NR). Second, the fraction of the targets for which
the native structure was the best scoring structure in a decoy set.
Third, the Pearson correlation coefficient r between the scoring
function and the Ca RMS error for the target decoys (the score–
error correlation); the Ca RMS error was calculated by MOD-
ELLER-8, upon least-squares rigid body superposition of
a model and the native structure. Fourth, the difference in the
Ca RMS error between the best scored model and the best model
(DRMSD); ideally, Ca DRMSD should be 0 Å. Fifth, the relative
occurrence of the most accurate (Ca RMS error) n% models
among the n% best scoring models compared to that for the
entire decoy set (n% enrichment). The best possible enrichment
ratio (i.e., all n% most accurate models are recognized by the
scoring function) is 1/n% [i.e., (n%/n%)/n%]. For example, the
10%-enrichment ratio for the best possible scoring function is
10 (i.e., 1/0.10). In contrast, a random scoring function has the
probability of n% to correctly identify n% most accurate
models, thus its enrichment ratio is n%/n% ¼ 1.
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