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Basic Models 

1. Discrete linear 
  Recursive deterministic 

  Recursive stochastic 

 

2. Continuous linear 
  Linear differential equations 

  Linearized models 

 

3. Discrete nonlinear 
  Difference or Ordinary Differential Equations 

 

4. Continuous nonlinear 
  Ad hoc models 

  Canonical models 

  Partial Differential Equations and Agent Based Models 



1. Discrete linear systems models 

Recursive Deterministic Models 

t

n

nt

ttt

tt

PP

PPP

PP

2

22

2

2

)(





















Example: 
Rn = #RBCs in circulation on day n 

Mn = #RBCs produced on day n 

f = Fraction of cells removed by spleen 

g = Production rate at bone marrow 
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Recursive Stochastic Models 

 
Markov models (Markov chain models): 

 

• Describe a system with n states (only) 

 

• At any discrete time the system is in one of the n states 

 

• Fixed set of probability based transitions between one state 

to another 
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If the system is in state X2 at t=0, probabilities of finding in 

states X1, X2 and X3 at t=1 is: 
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2. Continous linear systems models 









aXX
dt

dX
 

Simplest  example of growth of cells describing exponential 

growth or decay using a single linear differential equation 

(along with solution shown in the right) is: 

ateXtX 0)( 

Half life: Time it takes for half of material to be lost. 

AX
X


dt

d

System of linear differential equations with vector X and 

coefficient matrix A: 
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Solutions of the system: 



Linearized Models 

 
The approach is to flatten the nonlinear system in a small 

region around a point of interest called operating point 

(OP). It is required that the derivatives of the nonlinear 

system should exist. Analysis can now be done in the 

tangent plane. 
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Solutions of the system: 



3. Discrete nonlinear systems 

Nonlinear systems can quickly diverge from linear models. Consider 

logistic map. (Logistic map is based on logistic equation (LE) given 

below): 
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Two cases: r=1.5 and r=3.8. The second case exhibits chaos. 
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4. Continuous nonlinear systems 

Ad hoc models 
 

Some models just suit a given task! 

Consider the logistic equation: 
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Michaelis-Menten 

function for enzyme 

kinetics: 



Canonical models 
Process of setting up and analyzing models follow strict rules: 

Schematic diagram of an enzyme catalyzed reaction 



Linear pathway with feedback 
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Lokta-Volterra (LV) model: 



More complicated dynamical systems descriptions 

  Ordinary differential equations 

  Partial differential equations 

  Agent-based modeling 



Standard analysis 

Steady-state analysis 

A system is said to be in steady state if there is no change: 

   in numbers 

   in amount 

   in concentration 
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Example of a non-linear system with isolated steady states: 
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Stability analysis 

Assesses the degree to which a system can tolerate perturbations. 

   stable 

   marginally stable 

   unstable 
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Parameters of interest are trace, determinant and discriminant 
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Parameter sensitivity 

   Sensitivity tells how much a system is affected by small alterations 

in parameter values. 

   Sensitivity is not same as stability. Stability arises despite 

perturbation in dependent variables. Local stability is based on 

perturbation of dependent variables.  

   Sensitivity/gain analysis relates to parameters/independent 

variables changing permanently.  

   Good, robust systems have less sensitivity. 
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Analysis of systems dynamics 

   Bolus experiments 

   Persistent changes in structure or input 

   Comprehensive screening experiments 

   Analysis of critical points where systems behavior changes qualitatively 


