Eberhard O. Voit

A First Course in Systems Biology

Chapter 2 Introduction to Mathematical Modeling

Model

An artificial construct in the language of Mathematics that represents a process or a phenomenon.

Modeling

The process of creating a *model* to obtain new insights.

It provides explanations, predictions and extrapolations.

Goals, Inputs, and Initial Exploration

- Scope of the model, including goals, objectives, and possible applications
- Data availability or need (types, quantity, quality)
- Other available information (nonquantitative heuristics, qualitative input from experts)
- · Expected feasibility of the model
- Relevance and degree of interest within the scientific community

Model Selection

- Model structure
 - o Explanatory (mechanistic) versus correlative (black box)
 - o Static versus dynamic
 - o Continuous versus discrete
 - o Deterministic versus stochastic
 - o Spatially distributed versus spatially homogeneous
 - o Open versus closed
 - o Most appropriate, feasible approximations

Model Design

- Model diagram and lists of components
 - Dependent variables
 - Independent variables
 - Processes and interactions
 - Signals and process modulations
 - Parameters
- Design of symbolic equations
- Parameter estimation
 - Bottom-up
 - Top-down

Model Analysis and Diagnosis

- Internal consistency (conservation of mass)
- External consistency (closeness to data and expert opinion)
- Reasonableness of steady state(s)
- Stability analysis
- · Sensitivity and robustness analysis
- Structural and numerical boundaries and limitations
- Range of behaviors that can or cannot be modeled (oscillations, multiple steady states)

Model Use and Applications

- Confirmation, validation of hypotheses
- Explanation of causes and effects; causes of failure, counterintuitive responses
- Best case, worst case, most likely scenarios
- Manipulation and optimization (treatment of disease; avoidance of undesired states or dynamics; yield optimization in biotechnology)
- Discovery of design principles

Questions of scale: Size and time

Model Selection and Design

Model Structure

Detail required:

- Correlative
- Explanatory
- Open/closed
- Continuous/discrete

Model Structure

Detail required:

• Deterministic vs. stochastic/probabilistic

Model Structure

• Approximations

System Components

Once model is ready with its components and processes, model equations can be chosen (such as **SIR*** model) resulting in parameter estimation

*SIR: Susceptible, Infected and Recovered

System Components

Parameter estimation

Hill's equation:

$$v(S) = \frac{V_{\max}S^n}{K_M^n + S^n}$$

System Components

System Components:

- Multivariate system (variables such as genes, cells, individuals, etc.)
- Processes and interactions (involve and connect variables)
- Parameters (numerical characteristics viz, pH, temperature, turnover rate, etc.)
- Universal constants (e, π, etc.)

Dependents *vs.* independent variables **Feedback**: Inhibition *vs.* activation

Model Analysis and Diagnosis

Model Extensions and Refinements

Spread of infectious disease over 100 days and over an year

Exploration and Validation of Dynamical Features

TABLE 1: DECREASE IN THE NUMBER OF INFECTIVES IN THE SYSTEM WHEN THE CONTINUOUS QUARANTINING RATE IS $r_q = 0.1$; THE DECREASE ROUGHLY CORRESPONDS TO 10% PER TIME UNIT											
t	0	1	2	3	4	5	6	7	8	9	10
1	100	90.48	81.87	74.08	67.03	60.65	54.88	49.66	44.93	40.66	36.79

Results of two different quarantine rates (0.1 and 0.4) compared with no quarantine rate (dotted lines)

Model Use and Applications

Quarantine may lead to further outbreaks

Change in infection rates to 50% and 20% of original values give different results wrt quarantining