Syllabus for Molecular Structure Visualization and Prediction - I

- 1. Basic structural principles
 - Building blocks of life
 - Chemical properties of polypeptides
 - PDB Database
- 2. Intermolecular forces
 - Types of intermolecular forces
 - Entropy and temperature
 - Protein folding
 - Levinthal Paradox
- 3. Levels of protein structure
 - Primary structure
 - Secondary structure
 - Tertiary structure
 - Quaternary structure
- 4. Motifs of protein structure
 - Hydrophobic and hydrophilic regions
 - Ramachandran plot
 - Alpha-helix
 - Beta sheets
 - Loops
 - Topology diagrams
 - Various structural motifs
- 5. Protein structure prediction
 - Impediments
 - Sequence considerations
 - Structural considerations
 - Energy consideration
 - Energy landscape
 - Validation
- 6. Structure prediction of small proteins using *ab initio* stochastic models
 - Lattice simulation
 - Random-walk model
 - Self-avoiding model
 - HP-models

- 7. Structure prediction of small proteins using *ab initio* deterministic models
 - Ergodic hypothesis
 - Use of Newtonian equations of motion
 - Optimization techniques: Steepest descent, GA, simulated annealing
 - Force fields (Amber, CHARMM)
- 8. X-Ray crystallography and NMR
 - Structure determination methods
 - Structure evaluation methods
- 9. Nucleic acid structures
 - DNA structures
 - RNA structures
 - Secondary structure prediction in RNA
- 10. Useful tools
 - Visualization using VMD
 - PROCHECK
 - WHATIF
 - Simulation using Amber

Books:

- Molecular Modelling: Principles and Applications (2nd Edition) Andrew R. Leach (Prentice Hall)
- 2. Introduction to Protein Structure *Carl Branden, John Tooze (Garland)*
- 3. Proteins: Structures and Molecular Properties

 Thomas E. Creighton (Freeman)
- 4. Principles of Nucleic Acid Structure *Stephen Neidle (Academic Press)*