

Algorithmic Analysis and Programming Practices (IAAP-113M)
Assignment 7

Page 1

Assignment 7: Binary search trees

1. Read n ints and make a binary search tree (BST). Do k search operations to print results as y/n.

Input: (n, x_i, k, y_i)
4

2 1 4 3

3

3 7 1

Output:
y

n

y

2. Read n ints and make a BST in the same order. Print the tree in preorder, inorder and postorder

traversals. Separate characters by '_'.

Input: (n, x_i)
4

2 1 4 3

Output:
2_1_4_3_

1_2_3_4_

1_3_4_2_

3. Read 2n ints. Use each half to create two BSTs in the given order. Find if the two trees are identical.

Print y/n. There are T test cases.

Input: (T, n, x_i)
3

3

1 2 3 1 3 2

1 2 3 2 3 1

2 1 3 2 3 1

Output:
n

n

y

4. Given a BST, print out all root-to-leaf paths.

5. Find the number of leaves in a BST.

6. Find sum of all the leaf nodes in a BST.

7. Construct a binary tree given inorder and post-order traversal outputs.

8. Construct a full binary tree from given pre-order and post-order traversals and print in-order traversal

of it.

9. Delete a BST. Print the order in which nodes are deleted.

10. Construct the mirror tree of a given BST.

Algorithmic Analysis and Programming Practices (IAAP-113M)
Assignment 7

Page 2

11. Given a Binary Search Tree, and an integer k. Print all the nodes which are at k distance from root.

12. Find out the in-order successor and predecessor of a given node in a BST.

13. Given a BST and a key, write a function that prints all the ancestors of the key in the given binary tree.

14. Write a function which deletes all the terminal nodes in BST.

15. Given a BST, delete all the nodes by repeated deletion of root. Print the inorder traversal after every

deletion.

16. Given a binary tree, find if it is a BST.

17. A SumTree is a Binary Tree where the value of a node is equal to sum of the nodes present in its left

subtree and right subtree. Write a function that returns 1 if the given BST is SumTree and 0 otherwise.

All leaf nodes are trivial SumTrees.

18. Find distance between two given keys of a BST. Distance between two nodes is the minimum number

of edges to be traversed to reach one node from other.

19. Write a function to print all the nodes in a BST along with their individual heights and depths.

20. Print output of depth-first search given a BST.

21. Print output of breadth-first search given a BST.

22. Remove all nodes which don’t lie in any path with sum>= k. A node can be a part of multiple paths.

So we have to delete it only in case when all paths from it have sum less than k. Print the in-order

traversal of the tree after truncation.

23. Delete all duplicates of a node from a given binary search tree.

