Assignment 3: 2d arrays

1. For an n*n matrix diagonal elements are given. All non-diagonal elements are equal, say x. Find out the minimum value of x such that the sum of diagonal elements is less than the sum of non-diagonal elements.

Input:								
4								
5	10	47						
Output:								
5	3	3	3					
3	10	3	3					
3	3	4	3					
3	3	3	7					
(⊦	lint:	Sum	of diagonal element: 26, sum of other elements: 36)					

 In a matrix, calculate the sum of all neighboring elements of each diagonal element (up, down, left, right, and 4 diagonal elements -- a total of 8 elements). Print these values corresponding to each diagonal element. Also print the index of that diagonal element whose corresponding sum is highest.

Input:

5							
3	2	0	4	5			
1	10	4	-2	6			
0	3	7	0	8			
6	5	1	4	4			
9	7	0	-1	3			
Output:							
3:	13						
10	: 20						
7:	25						
4:	22						
3:	7						
index: 3							

- 3. Take a matrix of size m*n. Find out its transpose using a function transpose(arr, &m, &n).
 - **Input:** 2 3
 - 1 1 1
 - 222

Output:

- 12
- 1 2
- 1 2

4. Read a square matrix of size n. Do the following tasks:

a. Print all unique values along each row.

b. Print all unique values along each column.

c. Print all unique values in the matrix.

Input:

- 5. Create an array of employee names.
 - a. Arrange them in lexicographically sorted order
 - b. Print all unique names

Input:

8 Ram Mohan Shyam Amit Kritika Ram Mohit Amit **Output:** Sorted: Amit Amit Kritika Mohan Mohit Ram Ram Shyam Unique:

Amit Kritika Mohan Mohit Ram Shyam

6. Enter a square matrix and print the the i^{th} row and j^{th} column whose sums are equal.

7. Check whether given strings are palindrome.

Input:				
4				
sos				
abc				
hello				
abba				
Output:				
yes				
no				
no				

8. For an n*n matrix diagonal elements are given. Find if the matrix is such that diagonal element is equal to the sum of its neighboring (up/down/right/left only) elements.

Input:									
5									
3	2	0	4	5					
1	10	4	-2	6					
0	3	7	-1	8					
6	5	1	4	5					
9	7	2	-1	4					
Output:									

yes